BEST PROXIMITY POINTS IN NON - ARCHIMEDEAN FUZZY METRIC SPACES

Penumarthy Parvateesam Murthy, Rashmi Kewat

DOI Number
-
First page
479
Last page
488

Abstract


In this article we establish best proximity point theorems for non-self proximal contractions in the setting of Non - Archimedean Fuzzy Metric Space which are more general than the notion of self-contractions. Then we present some examples to support our best proximity point theorems.


Keywords


Proximity Points, Fuzzy Metric Spaces, Non-Archimedean Fuzzy Metric Spaces, Contraction Condition

Full Text:

PDF

References


A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpan-sive mappings, Studia Math. 171 (2005) 283-293.

C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions., Nonlinear Analysis, 69(11) (2008), 3790-3794.

E.A. Karapinar and I. M. Erhan, Best proximity point on dierent type contractions, Applied Mathematics and Information Sciences, 5(3) (2011) 558-569.

C. Mongkolkeha, Y. J. Cho and P. Kumam, Best proximity points for generalized proximal Ccontraction mappings in metric spaces with partial orders, Journal of Inequalities and Applications, (2013) 94-105.

C. D. Mihet, Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159(6) (2008) 739-744.

C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 162(1) (2011) 84-90.

C. Vetro C Best proximity points: Convergence and existence theorems for p-cyclic mappings. Nonlinear Analysis, 73(7) (2010) 2283 - 2291.

C. Vetro and P. Salimi. Best Proximity Point Results in Non-Archimedean Fuzzy Metric Spaces, Fuzzy Inf. Eng., 4 (2013), 417 - 429.

I.Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 15 (1975), 326-334.

I. Schweizer and A. Sklar, Statistical metric spaces, Pacic Journal of Mathematics, 10 (1960), 314-334.

L.A. Zadeh, Fuzzy sets, Information & Control, 8 (1965), 338-353.

O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.

P.V. Subramanyam, A common xed point theorem in fuzzy metric spaces, Information Sciences, 83(3-4) (1995), 109-112.

S. Sadiq Basha, Best proximity point theorems generalizing the contraction principle, Non- linear Anal., 74, 5844-5850.

S. Sadiq Basha, Best proximity point theorems, Journal of Approximation Theory, (2011), doi:10.1016/j.jat.2011.06.012.

S. Sadiq Basha, Common best proximity points: Global minimization of multi-objective functions, Journal of Global Optimization, 54(2) (2012) 367-373.

S. Sadiq Basha, Discrete optimization in partially ordered sets, Journal of Global Optimiza- tion, 54(3) (2012) 511-517.

S. Sadiq Basha, N. Shahzad and R. Jeyara, Best proximity point theorems: Exposition of a signicant non-linear programming problem, Journal of Global Optimization 56(4) (2013)

-1705.

Suzuki T, Kikkawa M, Vetro C (2009) The existence of best proximity points in metric spaces with the property UC. Nonlinear Analysis 71(7): 2918-2926

G. Jungck, Commuting mappings and xed points, Amer. Math. Monthly, 83 (1976), 261- 263.

A.George and P.Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994). 395-399.

M.A. Erceg, Metric space in fuzzy set theory, Journal of Mathematical Analysis and Appli- cations, 69 (1979), 205-230.

M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems, 27 (1988), 385-389.

W.A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003) 851-862.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)