ON THE AUTOMORPHISMS GROUP OF FINITE POWER GRAPHS

Asma Hamzeh

DOI Number
https://doi.org/10.22190/FUMI200322010H
First page
119
Last page
123

Abstract


The power graph of a group $G$ is the graph with vertex set $G$,
having an edge joining $x$ and $y$ whenever one is a power of the
other. The purpose of this paper is to study the automorphism
groups of the power graphs of infinite groups.

Keywords

Power graphs, infinite groups, automorphism group.

Full Text:

PDF

References


J. Abawajy, A. V. Kelarev and M. Chowdhury: Power graphs: a survey. Electronic J. Graph Theory and Applications 1 (2013), (2) 125-147.

A. R. Ashrafi and B. Soleimani: Normal edge-transitive and 12-arc-transitive Cayley graphs on non-abelian groups of order 2pq, p > q are odd primes. Int. J. Group Theory 5 (2016), 1-8.

P. J. Cameron and S. Ghosh: The power graph of a finite group. Discrete Math. 311 (2011), 1220-1222.

I. Chakrabarty, S. Ghosh and M. K. Sen: Undirected power graphs of semi-groups. Semigroup Forum 78 (2009), 410-426.

A. Doostabadi, A. Erfanian and A. Jafarzadeh: Some results on the power graphs of finite groups. Science Asia 41 (2015), 73-78.

M. Feng, X. Ma and K. Wang: The full automorphism group of the power (di)graph of a finite group. European J. Combin. 52 (2016), 197-206.

A. Hamzeh and A. R. Ashrafi: Automorphism group of supergraphs of the power graph of a finite group. European J. Combin. 60 (2017), 82-88.

A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of semigroups. Comment. Math. Univ. Carolin. 45 (1) (2004), 1-7.

A. V. Kelarev and S. J. Quinn: Directed graphs and combinatorial properties of semigroups. J. Algebra 251 (1) (2002), 16-26.

A. V. Kelarev, S. J. Quinn and R. Smolikova: Power graphs and semigroups of matrices. Bull. Austral. Math. Soc. 63 (2) (2001), 341-344.

A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of groups. Contributions to General Algebra 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.

A. V. Kelarev, J. Ryan and J. Yearwood: Cayley graphs as classifiers for data mining: the in uence of asymmetries. Discrete Math. 309 (2009), 5360-5369.

A. V. Kelarev: Ring constructions and applications, World Scientific, NJ, 2002.

A. V. Kelarev: Graph algebras and automata, Marcel Dekker, New York, 2003.

Z. Mehranian, A. Gholami and A. R. Ashrafi: A note on the power graph of a finite group. Int. J. Group Theory 5 (1) (2016), 1-10.

M. Mirzargar, A. R. Ashrafi and M. J. Nadjafi-Arani: On the power graph of a finite group. Filomat 26 (2012), 1201-1208.

M. Shaker and M. ali Iranmanesh: On groups with specified quotient power graphs. Int. J. Group Theory 5 (2016), 49-60.

A. Yu. Olshanskii: An infinite group with subgroups of prime orders. Math. USSR Izv. 16 (1981), 279289; translation of Izvestia Akad. Nauk SSSR Ser. Matem. 44 (1980), 309321.

A. Yu. Olshanskii: Groups of bounded period with subgroups of prime order. Algebra and Logic 21 (1983), 369-418; translation of Algebra i Logika 21 (1982),

-618.




DOI: https://doi.org/10.22190/FUMI200322010H

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)