ON THE AUTOMORPHISMS GROUP OF FINITE POWER GRAPHS
Abstract
having an edge joining $x$ and $y$ whenever one is a power of the
other. The purpose of this paper is to study the automorphism
groups of the power graphs of infinite groups.
Keywords
Full Text:
PDFReferences
J. Abawajy, A. V. Kelarev and M. Chowdhury: Power graphs: a survey. Electronic J. Graph Theory and Applications 1 (2013), (2) 125-147.
A. R. Ashrafi and B. Soleimani: Normal edge-transitive and 12-arc-transitive Cayley graphs on non-abelian groups of order 2pq, p > q are odd primes. Int. J. Group Theory 5 (2016), 1-8.
P. J. Cameron and S. Ghosh: The power graph of a finite group. Discrete Math. 311 (2011), 1220-1222.
I. Chakrabarty, S. Ghosh and M. K. Sen: Undirected power graphs of semi-groups. Semigroup Forum 78 (2009), 410-426.
A. Doostabadi, A. Erfanian and A. Jafarzadeh: Some results on the power graphs of finite groups. Science Asia 41 (2015), 73-78.
M. Feng, X. Ma and K. Wang: The full automorphism group of the power (di)graph of a finite group. European J. Combin. 52 (2016), 197-206.
A. Hamzeh and A. R. Ashrafi: Automorphism group of supergraphs of the power graph of a finite group. European J. Combin. 60 (2017), 82-88.
A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of semigroups. Comment. Math. Univ. Carolin. 45 (1) (2004), 1-7.
A. V. Kelarev and S. J. Quinn: Directed graphs and combinatorial properties of semigroups. J. Algebra 251 (1) (2002), 16-26.
A. V. Kelarev, S. J. Quinn and R. Smolikova: Power graphs and semigroups of matrices. Bull. Austral. Math. Soc. 63 (2) (2001), 341-344.
A. V. Kelarev and S. J. Quinn: A combinatorial property and power graphs of groups. Contributions to General Algebra 12 (Vienna, 1999), 229-235, Heyn, Klagenfurt, 2000.
A. V. Kelarev, J. Ryan and J. Yearwood: Cayley graphs as classifiers for data mining: the in uence of asymmetries. Discrete Math. 309 (2009), 5360-5369.
A. V. Kelarev: Ring constructions and applications, World Scientific, NJ, 2002.
A. V. Kelarev: Graph algebras and automata, Marcel Dekker, New York, 2003.
Z. Mehranian, A. Gholami and A. R. Ashrafi: A note on the power graph of a finite group. Int. J. Group Theory 5 (1) (2016), 1-10.
M. Mirzargar, A. R. Ashrafi and M. J. Nadjafi-Arani: On the power graph of a finite group. Filomat 26 (2012), 1201-1208.
M. Shaker and M. ali Iranmanesh: On groups with specified quotient power graphs. Int. J. Group Theory 5 (2016), 49-60.
A. Yu. Olshanskii: An infinite group with subgroups of prime orders. Math. USSR Izv. 16 (1981), 279289; translation of Izvestia Akad. Nauk SSSR Ser. Matem. 44 (1980), 309321.
A. Yu. Olshanskii: Groups of bounded period with subgroups of prime order. Algebra and Logic 21 (1983), 369-418; translation of Algebra i Logika 21 (1982),
-618.
DOI: https://doi.org/10.22190/FUMI200322010H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)