PROPERTIES OF A NEW SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED TO RAFID - OPERATOR AND q-DERIVATIVE

Mohammad Hassan Golmohammadi, Shahram Najafzadeh

DOI Number
https://doi.org/10.22190/FUMI200804015G
First page
179
Last page
189

Abstract


In this article, we introduce a new subclass of analytic functions, using the exponent operators of Rafid and $ q $-derivative. The coefficient estimates, extreme points, convex linear combination, radii of starlikeness, convexity, and finally integral are investigated.

Keywords

Rafid - operator, $ q $-derivative, $q$-integral, univalent function, coefficient bound, convex set, partial sum.

Full Text:

PDF

References


E. S. Aqlan: Some problems connected with geometric function theory, Ph.D.Thesis, Pune University, 2004.

W. G. Atshan and R. H. Buti: Fractional calculus of a class of univalent functions with negative coefficients dened by Hadamard product with Rad-operator,European J. Pure Appl. Math. 4(2) (2011), 162-173.

A. H. El-Qadeem and S. K. Al-Ghazal: On subclasse of p-valent functions with negative coefficients dened by using Rad operator, Comput. Math. Appl.(2019).

A. H. El-Qadeem and S. K. Al-ghazal: Some aspect of certain two subclass of analytic functions with negative coefficients dened by using Rad operator, arXiv:1904.07913v1.

G. Gasper and M. Rahman: Basic Hypergeometric series, Cambridge University Press, Cambridge, 1990.

F. H. Jackson: On q????functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (2) (1909), 253-281.

F. H. Jackson: On q-denite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203.

F. H. Jackson: q-Difference equations, Am. J. Math., 32 (1910), 305-314.

A. E. Livingston: On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 99- 107.

J. L. Liu: The Noor integral and strongly starlike functions, J. Math. Anal. Appl.261 (2001), 441-447.

R. J. Libera: Some classes of regular univalent functions, Proc. Amer. Math.Soc., 16 (1969), 755-758.

Z. S. I. Gasper: Linear sequential q-difference equations of fractional order,

Fract. Calc. Appl. Anal., 12 (2) (2009), 159{178.

A. O. Mostafa, H. M. Aouf and T. Bulboaca: Convolution conditions for subelasse of mermorphic functions of complex order associated with basic Bessel functions, J. Egyptian Math. Soc 25 (2017), 286-290.

T. M. Seoudy and M. K. Aouf: Convolution properties for certain classes of analytic functions dened by q-derivative operator, Abstr. Appl. Anal., (2014), Art. ID 846719, 1-7.




DOI: https://doi.org/10.22190/FUMI200804015G

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)