INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY COMPACT OPERATOR
Abstract
In this paper, we introduce and study the intuitionistic fuzzy $I$-convergent difference sequence spaces ${I}^{(\mu,\upsilon)}(T,\Delta)$ and ${I^{0}}^{(\mu,\upsilon)}(T,\Delta)$ using by compact operator. Also we introducce a new concept, called closed ball in these spaces. By the helping of these notions, we establish a new topological space and investigate some topological properties in intuitionistic fuzzy $I$-convergent difference sequence spaces ${I}^{(\mu,\upsilon)}(T,\Delta)$ and ${I^{0}}^{(\mu,\upsilon)}(T,\Delta)$ using by compact operator.
Keywords
Full Text:
PDFReferences
L.A. Zadeh: Fuzzy Sets. Inform. Cont. 8 (1965).
K. Wu: Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function, Fuzzy Sets and Systems, 109 (2000), 173-185.
G.A. Anastassiou: Fuzzy approximation by fuzzy convolution type operators, Comput. Math. Appl., 48 (2004), 1369-1386.
R. Saadati and J.H. Park: On the intuitionistic fuzzy topological spaces, Chaos Soliton. Fractal., 27 (2006), 331-344.
S. Vijayabalaji, N. Thillaigovindan and Y.B. Jun , Intuitionistic fuzzy n- normed linear space, Bull. Korean. Math. Soc., 44 (2007), 291-308.
S. Altundag and E. Kamber, Weighted statistical convergence in intuitionistic fuzzy normed linear spaces, J. Inequal. Spec. Funct., 8(2017), 113-124.
S. Altundag and E. Kamber, Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces, Gen. Math. Notes, 37(2016), 1-19.
E. Kamber, On Applications of Almost Lacunary Statistical Convergence in Intuitionistic Fuzzy Normed Linear Spaces,IJMSET, 4(2017), 7-27.
S. Altundag and E. Kamber, Lacunary Δ-statistical convergence in intuitionistic fuzzy n-normed linear spaces, Journal of inequalities and applications, 40 (2014) 1-12.
V.A. Khan and K. Ebadullah, Intuitionistic fuzzy zweier I-convergent sequence spaces, Func. Anal. TMA 1, (2015) 1-7.
V.A. Khan and Yasmeen, Intuitionistic Fuzzy Zweier I-convergent Double Sequence Spaces, New Trends in Mathematical Sciences, 4(2) (2016) 240-247.
V.A. Khan, Yasmeen, H. Fatıma and A. Ahmed, Intuitionistic Fuzzy Zweier Iconvergent Double Sequence Spaces defined by Orlicz function, EJPAM, 10(3) (2017) 574-585.
V.A. Khan, A. Es¸i and Yasmeen, Intuitionistic Fuzzy Zweier I-convergent Sequence Spaces defined by Orlicz function, Ann. Fuzzy Math. Inform, 12(2) (2016) 1-9.
V.A. Khan, Yasmeen, H. Fatıma, H. Eltaf and Q.M.D. Lohani, Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math., 3(1) (2016) 1-8.
H., Steinhaus ,Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
H., Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2) (2000), 669-686.
P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I- and I∗- convergence of double sequences, Math. Slovaca (58)(2008), 605-620.
B., Schweizer and A., Sklar, Statistical metric spaces, Pac. J. Math., 10(1960), 313-334.
T.K.,Samanta, Jebril and H.,Iqbal, Finite Dimensional Intuitionistic Fuzzy Normed Linear Space, Int. J. Open Problems Compt. Math., 2 (2009), 574-591.
H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
M. S¸eng¨on¨ul, On the Zweier sequence space, Demonstratio Mathematica, Vol. XL No.(40)(2007), 181-196.
C. S. Wang, On Norlund sequence spaces, Tamkang J. Math., 9(1978), 269-274.
E. Malkowsky, Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik, 49(1997), 187-196.
V. Kumar and K. Kumar, On ideal convergence of sequences in intuitionistic fuzzy normed spaces, Sel¸cuk J. Appl. Math., 10(2009), No. 2., 27-41.
E. Kamber, Intuitionisic fuzzy I-convergent difference sequence spaces defined by modulus function, J. Inequal. Spec. Funct., Volume 10 Issue 1(2019), 93-100.
E. Kamber, Intuitionisic fuzzy I-convergent difference double sequence spaces, Research and Communications in Mathematics and Mathematical Sciences, Vol. 10, Issue 2, 2018, 141-153.
S. Karakus¸, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons Fractals 35 (2008), 763-769.
E. Savas¸ and M. G¨urdal, Certain summability methods in intuitionistic fuzzy normed spaces, Journal of Intelligent and Fuzzy Systems 27(2014), 1621-1629.
E. Savas¸, λ- statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci., 9(2015), 501-505.
E. Savas¸, On Iθ− statistical convergence of order α in intuitionistic fuzzy normed spaces, Proceedings of the Romanian Academy 16 (2015) 121-129.
Ekrem A. Aljimi and Valdete Loku, Generalized Weighted Norlund-Euler Statistical Convergence, Int. Journal of Math. Analysis, 8(2014), no7, 345-354.
S. Karakus¸, Statistical convergence on probabilistic normed space, Math. Commun. 12 (2007), 11-23.
M. Mursaleen, Statistical convergence in random 2-normed spaces, Acta Sci. Math., 76 (2010), 101-109.
H. Altınok and M. Et, Statistical convergence of order (β, γ) for sequences of fuzzy numbers, Soft Computing, 23(2019), 6017-6022.
M. Et, H. Altınok and Y. Altın, On generalized statistical convergence of order α of difference sequences, J. Funct. Spaces Appl., (2013), Art. ID 370271, 7 pp..
E. Kamber, Weighted Norlund-Euler statistical convergence in intuitionistic fuzzy normed linear spaces, J. Inequal. Spec. Funct., Volume 11 Issue 2(2020), 1-9
DOI: https://doi.org/10.22190/FUMI200810033K
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)