$D_a$-HOMOTHETIC DEFORMATION AND RICCI SOLITIONS IN THREE DIMENSIONAL QUASI-SASAKIAN MANIFOLDS

Tarak Mandal

DOI Number
https://doi.org/10.22190/FUMI201114040M
First page
547
Last page
555

Abstract


In the present paper, we have studied curvature tensors of a quasi-Sasakian manifold with respect to the $D_a$-homothetic deformation. We have deduced the Ricci solition in quasi-Sasakian manifold with respect to the $D_a$-homothetic deformation. We have also proved that the quasi-Sasakian manifold is not $\bar{\xi}$-projectively flat under $D_a$-homothetic deformation. Also we give an example to prove the existance of quasi-Sasakian manifold.

Keywords

Quasi-Sasakian manifold, $D_a$-homothetic deformation, Ricci soliton, Weyl projective curvature tensor.

Full Text:

PDF

References


bibitem{a} {sc D. E. Blair}: textit{The theory of quasi-Sasakian structure}. J. Diff. Geom. 1(1967), 331-345.

bibitem{b} {sc U. C. De {rm and} A. K. Mondal}: textit{$3$-dimensional quasi-Sasakian manifolds and Ricci solitions}. SUT J. Math, Vol. {bf 48}, No 1(2012), 71-81.

bibitem{X} {sc U. C. De {rm and} A. A. Shaikh}: textit{Differential Geometry of manifolds}. Narosa Pub. House, New Delhi, 2007.

bibitem{c} {sc R. S. Hamilton}: textit{The Ricci flow on surfaces}. Contemporary Mathematics, {bf 71} (1988), 237-261.

bibitem{h} {sc S. K. Hui {rm and} D. Chakraborty}: textit{Ricci almost solitons on concircular Ricci pseudosymmetric $beta$-Kenmotsu manifolds}. Hacettepe Journal of Mathematics and Statistics, {bf 47(3)} (2018), 579-587.

bibitem{i} {sc S. K. Hui, S. S. Shukla {rm and} D. Chakraborty}: textit{$eta$-Ricci solitons on $eta$-Einstein Kenmotsu manifolds}. Global J. Adv. Res. Clas. Mod. Geom., {bf 6(1)} (2017), 1-6.

bibitem{j} {sc S. K. Hui, S. Uddin {rm and} D. Chakraborty}: textit{Generalized Sasakian-space-forms whose metric is $eta$-Ricci almost solitons}. Differental Geometry and Dynamical Systems, {bf 19} (2017), 45-55.

bibitem{d} {sc H. G. Nagaraja, D. L. Kiran Kumar {rm and} D. G. Prakasha}: textit{$D_a$-Homothetic Deformation And Ricci solitions in $(kappa,mu)$-contact metric manifolds}. Konuralp J. of Math., {bf 7}(1) (2019), 122-127.

bibitem{e} {sc H. G. Nagaraja {rm and} C. R. Premalatha}: textit{$D_a$-Homothetic deformation of $K$-contact manifolds}. International Scholarly Research Notice, Vol-2013.

bibitem{f} {sc A. Sarkar, A. Sil {rm and} A. K. Paul}: textit{On three dimensional quasi-Sasakian manifolds and magnetic curves}. Applied Mathematics E-notes, {bf 19} (2019), 55-64.

bibitem{g} {sc S. Tanno}: textit{The topology of contact Riemannian manifolds}. Illinois Journals of Mathematics, Vol {bf 12}, pp. 700-717, 1968.




DOI: https://doi.org/10.22190/FUMI201114040M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)