ON SOME EQUIVALENCE RELATION ON NON-ABELIAN $\CA$-GROUPS

Mohammad A. Iranmanesh, Mohammad Hossein Zareian

DOI Number
https://doi.org/10.22190/FUMI201225043I
First page
585
Last page
593

Abstract


A non-abelian group $G$ is called a $\CA$-group ($\CC$-group) if $C_G(x)$ is abelian(cyclic) for all $x\in G\setminus Z(G)$. We say $x\sim y$ if and only if $C_G(x)=C_G(y)$.We denote the equivalence class including $x$ by$[x]_{\sim}$. In this paper, we prove thatif $G$ is a $\CA$-group and $[x]_{\sim}=xZ(G)$, for all $x\in G$, then $2^{r-1}\leq|G'|\leq 2^{r\choose 2}$.where $\frac {|G|}{|Z(G)|}=2^{r}, 2\leq r$ and characterize all groups whose $[x]_{\sim}=xZ(G)$for all $x\in G$ and $|G|\leq 100$. Also, we will show that if $G$ is a $\CC$-group and $[x]_{\sim}=xZ(G)$,for all $x \in G$, then $G\cong C_m\times Q_8$ where $C_m$ is a cyclic group of odd order $m$ andif $G$ is a $\CC$-group and $[x]_{\sim}=x^G$, for all $x\in G\setminus Z(G)$, then $G\cong Q_8$.

Keywords

CA-group, CC-group, centralizer of a group, derived subgroup.

Full Text:

PDF

References


bibitem{AAM}

{sc A. Abdollahi, S. Akbari {rm and} H. R. Maimani}:

textit{Non commuting graph of group} J. Algebra. {bf 28} (2006),

--492.

bibitem{AJH}

{sc A. Abdollahi, S. M. Jafarian Amiri {rm and} A. M. Hassanabadi}: textit{Groups with specific number of centralizers}

Houston J. Math., {bf 33(1)} (2007), 43--57.

bibitem{A}

{sc A. Ashrafi}: textit{On finite groups with a given number of centralizers} Algebra Colloq. {bf 7(2)} (2000), 139--146.

bibitem{BS}

{sc S. M. Belcastro {rm and} G. J. Sherman}: textit{Counting centralizers in finite groups} Math. Mag. {bf 5} (1994), 111--114.

bibitem{IZ}

{sc M. A. Iranmanesh {rm and} M. H. Zareian}: textit{On $n$-centralizer $CA$-groups} submitted.

bibitem{JMR}

{sc S. M. Jafarian Amiri, H. Madadi {rm and} H. Rostami}: textit{Finite groups with certain number of centralizers}

Third Biennial International Group Theory Conference., {} (2015).

bibitem{JR}

{sc S. M. Jafarian Amiri {rm and} H. Rostami}: textit{Finite groups all of whose proper centralizers are cyclic}

B. Iran. Math. Soc. {bf 43(3)} (2017), 755-762.

bibitem{PW}

{sc K. Parattu {rm and} A. Wingerter}: textit{Tribimaximal mixing from small groups, additonal material}

Phys. Rev. D, {bf 84(1)} 013011.




DOI: https://doi.org/10.22190/FUMI201225043I

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)