EXPONENTIAL GROWTH OF SOLUTIONS FOR A VARIABLE-EXPONENT FOURTH-ORDER VISCOELASTIC EQUATION WITH NONLINEAR BOUNDARY FEEDBACK
Abstract
In this paper we study a variable-exponent fourth-order viscoelastic equation of the form
$$
|u_{t}|^{\rho(x)}u_{tt}+\Delta[(a+b|\Delta u|^{m(x)-2})\Delta u]-\int_{0}^{t}g(t-s)\Delta^{2}u(s)ds=|u|^{p(x)-2}u,
$$
in a bounded domain of $R^{n}$. Under suitable conditions on variable exponents and initial data, we prove that the solutions will grow up as an exponential function with positive initial energy level. Our result improves and extends many earlier results in the literature such as the on by Mahdi and Hakem (Ser. Math. Inform. 2020, https://doi.org/10.22190/FUMI2003647M).
Keywords
Full Text:
PDFReferences
M. M. Al-Gharabli, textit{New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity}, Bound. Value Probl. (2019) 2019:194.
M. M. Al-Gharabli and A. Guesmia and S. A. Messaoudi, textit{Well-posedness and asymptotic stability results for a viscoelastic plate equation with logarithmic nonlinearity}, App. Anal. textbf{99(1)} (2020), 50--74.
S. Antontsev and J. Ferreira, textit{A nonlinear viscoelastic plate equation with $overrightarrow{p}(x,t)-$ Laplacian operator: blow up of solutions with negative initial energy}, Nonlinear Anal. Real World App. textbf{59} (2021), 103240.
S. Antontsev and J. Ferreira and E. Pic{s}kin, textit{Existence and blow up of solutions for a strongly damped petrovsky equation with variable-exponent nonlinearities}, Electron. J. Differ. Equ. textbf{2021(6)}, (2021) 1--18.
S. Antontsev and S. I. Shmarev, textit{Anisotropic parabolic equations with variable nonlinearity}, Publicacions Mat. textbf{53(2)} (2009), 355--399.
C. Chen and L. Ren, textit{Weak solution for a fourth-order nonlinear wave equation}, J. South Uni. (english eddition) textbf{21} (2005), 369--374.
L. Diening and H. Petteri and P. Hasto and et al. textit{Lebesgue and {S}obolev spaces with variable exponents, In Lecture Note Mathematics}. Vol. 2017; 2011.
D. Edmunds and J. Rakosnik, textit{Sobolev embeddings with variable exponent}, Stud Math. textbf{143} (2000), 267--293.
D. Edmunds and J. Rakosnik, textit{Sobolev embeddings with variable exponent {II}}, Math Nachr. textbf{246} (2002), 53--67.
J. Ferreira and S. A. Messaoudi, textit{On the general decay of a nonlinear viscoelastic plate equation with a strong damping and $overrightarrow{p}(x,t)-$ Laplacian}, Nonlinear Anal. Theor. textbf{104}, (2014) 40--49.
F. Li and Q. Gao, textit{Blow-up of solution for a nonlinear Petrovsky type equation with memory}, Appl. Math. Comput. textbf{274} (2016), 383--392.
F. Z. Mahdi and A. Hakem, textit{Existence and blow up for a nonlinear viscoelastic hyperbolic problem with variable exponents}, Facta Universitatis, Ser. Math. Inform. textbf{35(3)} (2020), 647--672.
S. A. Messaoudi, textit{Global existence and nonexistence in a system of Petrovsky}, J. Math. Anal. Appl. textbf{265(2)} (2002), 296--308.
S. A. Messaoudi and A. A. Talahmeh and J. H. Al-Smail, textit{Nonlinear damped wave equation: existence and blow-up}, Comput. Math. Appl. textbf{74} (2017), 3024--3041.
J. E. Munoz Rivera and E. C. Lapa and R. Barreto, textit{Decay rates for viscoelastic plates with memory}, J. Elasticity textbf{44} (1996), 61-87.
M. I. Mustafa and G. A. Abusharkh, textit{Plate equations with frictional and viscoelastic dampings}, Appl. Anal. textbf{96(7)} (2017), 1170--1187.
S. H. Park and J. R. Kang, textit{Blow- up of solutions for a viscoelastic wave equation with variable exponents}, Math. Meth. Appl. Sci. textbf{42} (2019), 2083--2097.
M. Shahrouzi, textit{Blow-up fo solutions for a class of fourth-order equation involving dissipative boundary condition and positive initial energy}, J. Part. Diff. Eq. textbf{27(4)} (2014), 347--356.
M. Shahrouzi, textit{General decay and blow-up results for nonlinear fourth-order integro-differential equation}, Indian J. Pure Appl. Math. textbf{49(4)} (2018), 729--742.
M. Shahrouzi, textit{Global nonexistence of solutions for a class of viscoelastic Lam$acute{textmd{e}}$ system}, Indian J. Pure Appl. Math. textbf{51(4)} (2020), 1383--1397.
M. Shahrouzi, textit{On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities}, Comput. Math. Appl. textbf{75} (2018), 3946--3956.
M. Shahrouzi and F. Tahamtani, textit{Global nonexistence and stability of solutions of inverse problems for a class of Petrovsky systems}, Georgian Math. J. textbf{19} (2012), 575--586.
H. Song, textit{Global nonexistence of positive initial energy solutions for a viscoelastic wave equation}, Nonlinear Anal. textbf{125} (2015), 260--269.
F. Tahamtani and A. Peyravi, textit{Global existence, uniform decay, and exponential growth of solutions for a system of viscoelastic Petrovsky equations}, Turk. J. Math. textbf{38} (2014), 87--109.
F. Tahamtani and M. Shahrouzi, textit{Existence and blow up of solutions to a Petrovsky equation with memory and nonlinear source term}, Bound. Value Probl. textbf{2012} (2012), 1--15.
S. T. Wu and L. Y. Tsai, textit{On global solutions and blow-up of solutions for a nonlinear damped Petrovsky system}, Taiwanese J. Math. textbf{13(2A)} (2009), 545--558.
F. Xianling and Q. H. Zhang, textit{Existence of solutions for $p(x)-${L}aplacian {D}irichlet problem}, Nonlinear Anal. textbf{52} (2003), 1843--1852.
F. Xianling and D. Zhao, textit{On the spaces ${L}^{p(x)}$ and ${W}^{m,p(x)}({Omega})$}, J. Math. Anal. Appl. textbf{263} (2001), 424--446.
Z. Yang, textit{Blow-up and lifespan of solutions for a nonlinear viscoelastic Kirchhoff equation}, Results Math. (2020), 75--84.
DOI: https://doi.org/10.22190/FUMI210222035S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)