ON THE NUMBER OF CYCLES OF GRAPHS AND VC-DIMENSION
Abstract
Keywords
Full Text:
PDFReferences
W. Ahrens: Ueber das gleichungssystem einer kirchho_schen galvanischen stromverzweigung. Math. Ann. 49 (1897) 311-324 (German).
R. E. L. Aldred and C. Thomassen: On the maximum number of cycles in a planar graph. J. Graph Theory 57 (2008) 255-264.
R. Anstee, L. Ronyai and A. Sali: Shattering news. Graphs Combin 18 (1) (2002) 59-73.
A. Arman and S. Tsaturian: The maximum number of cycles in a graph with fixed number of edges. Electron. J. Comb. 26 (2019) P4.42.
L. Beaudou, P. Dankelmann, F. Foucaud, M. A. Henning, A. Mary and A. Parreau: Bounding the order of a graph using its diameter and metric dimension: a study through tree decomposition and VC dimension. SIAM Journal on Discrete Mathematics 32 (2018) 902-918.
C. Berge: Graphs and Hypergraphs. North-Holland (translation and revision of Graphes et Hypergraphes, Dunod, 1970), 1973.
B. Bollobas: Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability. Cambridge University Press, 1986.
N. Bousquet and S. Thomasse: VC-dimension and Erdos-Posa property. Discrete Math. 338 (2015) 2302-2317.
A. Bretto: Hypergraph theory, an introduction. Springer, Newyork, 2013. 10. V. D. Chepoi, B. Estellon and Y. Vaxes: Covering planar graphs with a fixed number of balls. Discrete Comput Geom 37 (2007) 237-244.
V. D. Chepoi, B. Estellon and Y. Vaxes: Covering planar graphs with a xed number
of balls. Discrete Comput Geom 37 (2007) 237{244.
Z. Dvorak, N. Morrison, J. A. Noel, S. Norin and L. Postle: Bounding the number of cycles in a graph in terms of its degree sequence. arXiv:1907.12091v1(2019).
https://oeis.org, The on-line encyclopedia of integer sequences.
S. Jukna: Extremal Combinatorics. With Applications in Computer Science, 2ed. Springer, Heidelberg, 2011.
Z. Kiraly: Maximum number of cycles and Hamiltonian cycles in sparse graphs. Tech. rep., Egervary Research Group (2009).
E. Kranakis, D. Krizanc, B. Ruf, J. Urrutia and G.Woeginger: The VC-dimension of set systems defined by graphs. Discrete Appl. Math. 77 (3) (1997) 237-257.
E. Kranakis, D. Krizanc and G. Woeginger: VC-dimensions for graphs. in: M. Nagl, editor, Graph-theoretic concepts in computer science, LNCS 1017, 1995, pp. 1-13.
J. Matousek: Lectures on Discrete Geometry. Springer-Verlag New York, 2002.
A. Mofidi: On partial cubes, well-graded families and their duals with some applications in graphs. Discrete Appl. Math, 283 (2020) 207-230.
A. Modi: On the VC-dimension, covering and separating properties of the cycle and spanning tree hypergraphs of graphs. Trans. Comb. 11(1) (2022) 29-43, Doi:10.22108/TOC.2021.127880.1832.
A. Modi: On some dynamical aspects of NIP theories. Arch. Math. Logic, 57(1), (2018) 37-71.
N. Sauer: On the density of families of sets. J. Comb. Theory, Ser. A 13 (1972) 145-147.
S. Shelah: A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41 (1972) 247-261.
DOI: https://doi.org/10.22190/FUMI210301011M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)