CONSTRUCTION OF OFFSET SURFACES WITH A GIVEN NON-NULL ASYMPTOTIC CURVE

Ergin Bayram, Fatma Güler

DOI Number
https://doi.org/10.22190/FUMI210322072B
First page
983
Last page
993

Abstract


In the present work, we study construction of offset surfaces with a givennon-null asymptotic curve. Let $\alpha \left( s\right) $ be a spacelike ortimelike unit speed curve with non-vanishing curvature and $\varphi \left(s,t\right) $ be a surface pencil accepting $\alpha \left( s\right) $ as acommon asymptotic curve. We obtain conditions such that the offset surfacepossesses the image of $\alpha \left( s\right) $ as an asymptotic curve. Wevalidate the method with illustrative examples.

Keywords

Ofset surface, Minkowski 3-space, asymptotic curve

Full Text:

PDF

References


bibitem{bayram}

{sc E. Bayram}: textit {Surface pencil with a common adjoint curve}.

Turkish Journal of Mathematics {bf 44} (2020), 1649-1659.

bibitem{11bayram}

{sc E. Bayram, E. Erg"{u}n {rm and} E. Kasap}: textit {Surface family with

a common natural geodesic lift of a spacelike curve with timelike binormal

in Minkowski 3-space}. Hagia Sophia Journal of Geometry {bf 1} (2019), 17-23.

bibitem{10bayram}

{sc E. Bayram, F. G"{u}ler {rm and} E. Kasap}: textit {Parametric representation of a surface pencil with a common asymptotic curve}. Comput.

Aided Design {bf 44} (7) (2012), 637-643.

bibitem{17cimdiker}

{sc M. c{C}.{ı}md.{ı}ker {rm and} C. Ek.{ı}c.{ı}}: textit{On the spacelike parallel

ruled surfaces with Darboux frame}. Math. Comb. Book Series {bf 2} (2017), 60-69.

bibitem{12duggal}

{sc K. L. Duggal {rm and} A. Bejman}: textit{Ligtlike Submanifolds of

Semi Riemannian Manifolds and Applications}. Kluwer Academic Publisher, 1976.

bibitem{14ekici}

{sc C. Ek.{ı}c.{ı} {rm and} A. G"{o}rg"{u}l"{u}}: textit{Intrinsic equations

for a generalized relaxed elastic line on an oriented surface in the

Minkowski 3-space $E_{1}^{3}$}. Turk J Math. {bf 33} (2009), 397-402.

bibitem{7faruk}

{sc R. T. Farouki}: textit{The approximation of non-degenerate offset

surfaces}. Comput. Aided Geo. Design {bf 3} (1) (1986), 15-43.

bibitem{6guler}

{sc F. G"{u}ler, E. Bayram {rm and} E. Kasap}: textit {Offset surface pencil

with a common asymptotic curve}. Int J Geom Methods M {bf 15} (11) (2018), 1850195.

bibitem{5herman}

{sc T. Hermann}: textit{On the smootthness of offset surfaces}. Comput.

Aided Geo. Design {bf 15} (1998), 529-533.

bibitem{9li}

{sc C. Y. Li, R. H. Wang {rm and} C. G. Zhu}: textit {Parametric representation

of a surface pencil with a common line of curvature}. Comput. Aided Design {bf 43} (9) (2011), 1110-1117.

bibitem{1maekawa}

{sc T. Maekawa}: textit{An overview of offset curves and surfaces}.

Comput. Aided Design {bf 31} (1999), 165-173.

bibitem{3moon}

{sc H. P. Moon}: textit{Equivolumetric offset surfaces}. Comput. Aided

Geo. Design {bf 26} (1) (2009), 17-36.

bibitem{13onder}

{sc M. "{O}nder {rm and} H. H. Uu{g}urlu}: textit{Frenet frames and

invariants of timelike ruled surfaces}. Ain Shams Eng. J. {bf 4} (2013), 502-513.

bibitem{4pavic}

{sc D. Pavi'{c} {rm and} L. Kobbelt}: textit{High-resolution volumetric

computation of offset surfaces with feature preservation}. In Computer

Graphics Forum {bf 27} (2008), 165-174.

bibitem{2pham}

{sc B. Pham}: textit{Offset curves and surfaces: a brief survey}. Comput.

Aided Design {bf 24} (4) (1992), 223-229.

bibitem{15saffak}

{sc G. c{S}affak Atalay, E. Bayram {rm and} E. Kasap}: textit {Surface

family with a common asymptotic curve in Minkowski 3- space}. J Sci. Art. {bf 2}

(2018), 357-68.

bibitem{saffak2}

{sc G. c{S}affak Atalay {rm and} E. Kasap}: textit{Surfaces family with

common null asymptotic}. Applied Mathematics and Computation {bf 26} (2015),

-139.

bibitem{8wang}

{sc G. J. Wang, K. Tang {rm and} C. L. Tai}: textit{Parametric representation

of a surface pencil with a common spatial geodesic}. Comput. Aided Design {bf 36}

(2004), 447-459.

bibitem{16will}

{sc T. J. Willmore}: textit{An Introduction to Differential Geometry}.

Oxford University Press, Delhi, 1959.




DOI: https://doi.org/10.22190/FUMI210322072B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)