DUALITY IN INVEX PROGRAMMING PROBLEM IN HILBERT SPACE

Sandip Chatterjee, R. N. Mukherjee

DOI Number
-
First page
255
Last page
262

Abstract


In this paper the concept of duality has been introduced for Invex Programming Problem in infinite dimensional Hilbert Spaces. A generalization of the concept of Wolfe-duality has been proposed for such class of problems. Some important theorems regarding the characterization of the dual problems have also been discussed.

Keywords


Invexity, Wolfe-Duality, KKT Conditions

Full Text:

PDF

References


bibitem{1} {sc A. Ben-Israel}, B. Mond, What is Invexity? Journal of Australian Mathematical Society, Ser. B, {bf 28(1)} (1986), 1-9.

bibitem{2} {sc A. Ben-Tal}, On Generalized Means and Generalized Convex Functions, Journal of Optimization Theory and Applications. {bf 21} (1977), 1-13.

bibitem{3} {sc B.D. Craven}, Invex functions and constrained local minima, Bulletin of the Australian Mathematical Society. {bf 24} (1981), 1-20.

bibitem{4} {sc B.D. Craven, B.M. Glover} Invex functions and duality, Journal of Australian Mathematical Society. Ser. A {bf 39} (1985), 1-20.

bibitem{5} {sc D.H.Martin}, The Essence of Invexity, J.O.T.A. 47,1,65-76.1985.

bibitem{6} {sc D.P. Bertsekas}, Convex Optimization Theory, Athena Scientific. 2009.

bibitem{7} {sc D.V.Luu, N.X. Ha}, An Invariant property of invex functions and applications, Acta Mathematica Vietnamica. {bf 25} (2000), 181-193.

bibitem{8} {sc J.B. Hiriart-Urruty, C. Lamerachal}, Fundamentals of Convex Analysis. Springer. 2001.

bibitem{9} {sc J.M. Borwein}, Lewis A.S. Convex Analysis and Nonlinear Optimization, Springer. 2006.

bibitem{10} {sc J.V. Tiel}, Convex Analysis-An Introductory Text, John Willey and Sons. 1984.

bibitem{11} {sc L.D.Berkovitz}, Convexity and Optimization in $mathbb{R}^{n}$, John Wiley and Sons, 2002.

bibitem{12} {sc M.A. Hanson}, On Sufficiency of Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications.{bf 80} (1981), 545-550.

bibitem{13} {sc M. Avriel}, Nonlinear Programming: Analysis and Methods, Prentice Hall, New Jersey. 1976.

bibitem{14} {sc R. Pini}, Invexity and generalized convexity, Optimization. {bf 22(4)} (1991), 513-525.

bibitem{15} {sc R.T. Rockafellar}, Convex Analysis, Princeton University Press. 1970.

bibitem{16} {sc Sandip Chatterjee, R.N. Mukherjee}, Invexity and a Class of Constrained Optimization Problems in Hilbert Spaces, Facta Universitatis (Nis): Ser. Math. Inform., Vol {bf 29}, No.4(2014), 337-342.

bibitem{17} {sc S. Boyd, L. Vendenberghe}, Convex Optimization, Cambridge University Press. 2004.

bibitem{18} {sc S.K. Mishra, G. Giorgi}, Invexity and Optimization, Springer-Verlag. 2008.

bibitem{19} {sc S. Mititelu}, Invex Sets and Preinvex Functions, Journal of Advanced Mathematical Studies. {bf 2(2)} (2009), 41-52.

bibitem{20} {sc TE. Fortmann, M. Athans}, Filter design subject to output sidelobe constraints : theoritical considerations, JOTA, {bf 14}, 179-198, 1974.

bibitem{21} {sc V. Barbu, T. Precupanu}, Convexity and Optimization in Banach Spaces, Springer, 2012

bibitem{22} {sc V. Jeyakumar, B. Mond}, On generalized convex mathematical programming, Journal of Australian Mathematical Society. Series B, {bf 34} (1992), 43-53.

bibitem{23} {sc Y. Benyamini}, J. Lindenstrauss, Geometric Non-Linear Functional Analysis. Vol.-1, American Mathematical Society, Colloquium Publications {bf 48} 2000.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)