A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS

Radu-Emil Precup, Stefan Preitl, Claudia-Adina Bojan-Dragos, Elena-Lorena Hedrea, Raul-Cristian Roman, Emil M. Petriu

DOI Number
https://doi.org/10.22190/FUME220111005P
First page
021
Last page
036

Abstract


Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach.

Keywords

Closed-loop data-driven system identification, Data-driven fuzzy control, Extended Symmetrical Optimum method, Servo systems

Full Text:

PDF

References


Data-driven fuzzy control with experimental validation, national exploratory research grant (PCE), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding - UEFISCDI), 2021-2023, project code: PN-III-P4-ID-PCE-2020-0269, http://www.aut.upt.ro/~rprecup/grant2021.html. (last access: 10.01.2022)

Precup, R.-E., Roman, R.-C., Safaei, A., 2022, Data-driven Model-free Controllers, 1st Ed. CRC Press, Taylor and Francis.

Precup, R.-E., Roman, R.-C., Teban, T.-A., Albu, A., Petriu, E.M., Pozna, C., 2020, Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems, Studies in Informatics and Control, 29(4), pp. 399-410.

Hjalmarsson H., 2002, Iterative feedback tuning - an overview, International Journal of Adaptive Control and Signal Processing, 16(5), pp. 373-395.

Jung, H., Jeon, K., Kang, J.-G., Oh, S., 2020, Iterative feedback tuning of cascade control of two-inertia system, IEEE Control Systems Letters, 5(3), pp. 785-790.

Hou, Z.-S., Wang Z., 2013, From model-based control to data-driven control: survey, classification and perspective, Information Sciences, 235, pp. 3-35.

Yu, W., Wang, R., Bu, X.-H., Hou, Z.-S., 2020, Model free adaptive control for a class of nonlinear systems with fading measurements, Journal of the Franklin Institute, 357(12), pp. 7743-7760.

Spall, J.C., Cristion, J.A., 1998, Model-free control of nonlinear stochastic systems with discrete-time measurements, IEEE Transactions on Automatic Control, 43(9), pp. 1198-1210.

Zamanipour, M., 2020, A novelty in Blahut-Arimoto type algorithms: optimal control over noisy communication channels, IEEE Transactions on Vehicular Technology, 69(6), pp. 6348–6358.

Karimi, A., Miskovic, L., Bonvin, D., 2004, Iterative correlation-based controller tuning, International Journal of Adaptive Control and Signal Processing, 18(8), pp. 645-664.

Sato, T., Kusakabe, T., Himi, K., Araki, N., Konishi, Y., 2021, Ripple-free data-driven dual-rate controller using lifting technique: application to a physical rotation system, IEEE Transactions on Control Systems Technology, 29(3), pp. 1332-1339.

Kammer, L.C., Bitmead, R.R., Bartlett, P.L., 2000, Direct iterative tuning via spectral analysis, Automatica, 36(9), pp. 1301-1307.

da Silva Moreira, J., Acioli Júnior, G., Rezende Barros, G., 2018, Time and frequency domain data-driven PID iterative tuning, IFAC-PapersOnLine, 51(15), pp. 1056-1061.

Halmevaara, K., Hyötyniemi, H., 2006, Data-based parameter optimization of dynamic simulation models, Proc. 47th Conference on Simulation and Modelling; Helsinki, Finland, pp. 68-73.

McDaid, A.J., Aw, K.C., Haemmerle, E., Xie, S.-Q., 2012, Control of IPMC actuators for microfluidics with adaptive “online” iterative feedback tuning, IEEE/ASME Transactions on Mechatronics, 17(4), pp. 789-797.

Huang, J.-W., Gao, J.-W., 2020, How could data integrate with control? A review on data-based control strategy, International Journal of Dynamics and Control, 8(4), pp. 1189-1199.

Fliess, M., Join, C., 2009, Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?, IFAC Proceedings Volumes, 42(10), pp. 1531-1550.

Fliess, M., Join, C., 2013, Model-free control, International Journal of Control, 86(12), pp. 2228-2252.

Campi, M.C., Lecchini, A., Savaresi, S.M., 2002, Virtual reference feedback tuning: a direct method for the design of feedback controllers, Automatica, 38(8), pp. 1337-1346.

Formentin, S., Campi, M.C., Caré, A., Savaresi, S.M., 2019, Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design, Systems and Control Letters, 127, pp. 25-34.

Gao, Z., 2006, Active disturbance rejection control: a paradigm shift in feedback control system design, Proc. 2006 American Control Conference, Minneapolis, MN, USA, pp. 2399-2405.

Roman, R.-C., Precup, R.-E., Petriu. E.M., 2021, Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems, European Journal of Control, 58, pp. 373-387.

Kadali, R., Huang, B., Rossiter, A., 2003, A data driven subspace approach to predictive controller design, Control Engineering Practice, 11(3), pp. 261-278.

Lucchini, A., Formentin, S., Corno, M., Piga, D., Savaresi, S.M., 2020, Torque vectoring for high-performance electric vehicles: An efficient MPC calibration, IEEE Control Systems Letters, 4(3), pp. 725-730.

Safonov, M.G., Tsao, T.-C., 1997, The unfalsified control concept and learning, IEEE Transactions on Automatic Control, 42(6), pp. 843-847.

Jiang, P., Cheng, Y.-Q., Wang, X.-N., Feng, Z., 2016, Unfalsified visual servoing for simultaneous object recognition and pose tracking, IEEE Transactions on Cybernetics, 46(12), pp. 3032-3046.

Novara, C., Formentin, S., Savaresi, S.M., Milanese, M., 2015, A data-driven approach to nonlinear braking control, Proc. 54th IEEE Conference on Decision and Control, Osaka, Japan, pp. 1-6.

Galluppi, O., Formentin, S., Novara, C., Savaresi, S.M., 2019, Multivariable D2-IBC and application to vehicle stability control, ASME Journal of Dynamic Systems, Measurement, and Control, 141(10), pp. 1-12.

Van Waarde, H.J., Eising, J., Trentelman, H.L., Camlibel, M.K., 2020, Data informativity: a new perspective on data-driven analysis and control, IEEE Transactions on Automatic Control, 65(11), pp. 4753-4768.

Fliess, M., Join, C., 2020, Machine learning and control engineering: the model-free case, in Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1, Arai, K., Kapoor, S., Bhatia, R., Eds. Springer, Cham, pp. 258-278.

Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Petriu, E.M., Bojan-Dragos, C.-A., 2021, Data-driven model-free sliding mode and fuzzy control with experimental validation, International Journal of Computers Communications & Control, 16(1), 4076, pp. 1-17.

Precup, R.-E., Preitl, S., 1997, Popov-type stability analysis method for fuzzy control systems, Proc. Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, vol. 2, pp. 1306-1310.

Haber, R.-E., Alique J.R., Alique, A., Hernández, J., Uribe-Etxebarria. R., 2003, Embedded fuzzy-control system for machining processes: Results of a case study, Computers in Industry, 50 (3), pp. 353-366.

Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004, Fuzzy controllers for tire slip control in anti-lock braking systems, Proc. 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, vol. 3, pp. 1317-1322.

Škrjanc, I., Blažič, S., 2005, Predictive functional control based on fuzzy model: design and stability study, Journal of Intelligent and Robotic Systems, 43(2-4), pp. 283-299.

Precup, R.-E, Preitl, S., 2006, Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications, Acta Polytechnica Hungarica, 3(1), pp. 61-76.

Tomescu, M.L., Preitl, S., Precup, R.-E., Tar, J.K., 2007, Stability analysis method for fuzzy control systems dedicated controlling nonlinear processes, Acta Polytechnica Hungarica, 4(3), pp. 127-141.

Angelov, P., Škrjanc, I., Blažič, S., 2013, Robust evolving cloud-based controller for a hydraulic plant, Proc. 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, pp. 1-8.

Johanyák, Z.C., 2015, A simple fuzzy logic based power control for a series hybrid electric vehicle, Proc. 9th IEEE European Modelling Symposium on Mathematical Modelling and Computer Simulation, Madrid, Spain, pp. 207-212.

Vaščák, J., Hvizdoš, J., 2016, Vehicle navigation by fuzzy cognitive maps using sonar and RFID technologies, Proc. IEEE 14th International Symposium on Applied Machine Intelligence and Informatics, Herľany, Slovakia, pp. 75-80.

Du, S., Wu, M., Chen, L.-F., Zhou, K.-L., Hu, J., Cao. W.-H., Pedrycz, W., 2020, A fuzzy control strategy of burn-through point based on the feature extraction of time-series trend for iron ore sintering process, IEEE Transactions on Industrial Informatics, 16(4), pp. 2357-2368.

Castillo, O., Cortés-Antonio, P., Melin, P., Valdez, F., 2020, Type-2 fuzzy control for line following using line detection images, Journal of Intelligent & Fuzzy Systems, 39(5), pp. 6089-6097.

Pan, Y.-N., Du, P.-H., Xue, H., Lam, H.-K., 2021, Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance, IEEE Transactions on Fuzzy Systems, 29(8), pp. 2388-2398.

Wu, H.-N., Wang, J.-W., Li, H.-X., 2012, Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems, Automatica, 48(10), pp. 2535-2543.

Simani, S., Alvisi, S., Venturini, M., 2015, Data-driven design of a fault tolerant fuzzy controller for a simulated hydroelectric system, IFAC-PapersOnLine, 48 (21), pp. 1090-1095.

Kamesh, R., Rani, K.Y., 2016, Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor, ISA Transactions, 64, pp. 418-430.

Juang, C.-F., Chang, Y.-C., 2016, Data-driven interpretable fuzzy controller design through multi-objective genetic algorithm, Proc. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, pp. 2403-2408.

Roman, R.-C., Precup, R.-E., David R.-C., 2018, Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems, Procedia Computer Science, 139, pp. 372-380.

Roman, R.-C., Precup, R.-E., Radac, M.-B., 2017, Model-free fuzzy control of twin rotor aerodynamic systems, Proc. 25th Mediterranean Conference on Control and Automation, Valletta, Malta, pp. 559-564.

Roman, R.-C., Precup, R.-E., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2019, Combined model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems, Procedia Computer Science, 162, pp. 267-274.

Roman, R.-C., Precup, R.-E., Petriu, E.M., Hedrea, E.-L., Bojan-Dragos, C.-A., Radac, M.-B., 2019, Model-free adaptive control with fuzzy component for tower crane systems, Proc. 2019 IEEE International Conference on Systems, Man and Cybernetics, Bari, Italy, pp. 1384-1389.

Roman, R.-C., Precup, R.-E., Petriu, E.M., Dragan, F., 2019, Combination of data-driven active disturbance rejection and Takagi-Sugeno fuzzy control with experimental validation on tower crane systems, Energies, 12(8), pp. 1-19.

Touhami, M., Hazzab, A., Mokhtari, F., Sicard, P., 2019, Active disturbance rejection controller with ADRC-fuzzy for MAS control, Electrotehnica, Electronica, Automatica (EEA), 67(2), pp. 89-97.

Dombi, J., Hussain, A., 2019, Data-driven arithmetic fuzzy control using the distending function, in IHIET: Human Interaction and Emerging Technologies, Ahram, T., Taiar, R., Colson, S., Choplin, A., Eds. Springer, Cham, Advances in Intelligent Systems and Computing, vol. 1018. pp. 215-221.

Preitl, S., Precup, R.-E., Preitl, Z., Vaivoda, S., Kilyeni, S., Tar J.K., 2007, Iterative feedback and learning control. Servo systems applications, IFAC Proceedings Volumes, 40(8), pp. 16-27.

Precup, R.-E., Preitl, S., Rudas, I.J., Tomescu, M.L., Tar, J.K., 2008, Design and experiments for a class of fuzzy controlled servo systems, IEEE/ASME Transactions on Mechatronics, 13(1), pp. 22-35.

Skogestad, S., Morari, M., 1989, Robust performance of decentralized control systems by independent designs, Automatica, 25(1), pp. 119-125.

Lee, J., Cho, W., Edgar, T.F., 1998, Multiloop PI controller tuning for interacting multivariable processes, Computers & Chemical Engineering, 22(11), pp. 1711-1723.

Baruah, G., Majhi, S., Mahanta, C., 2019, Auto-tuning of FOPI controllers for TITO processes with experimental validation, International Journal of Automation and Computing, 16(5), pp. 589–603.

Youssef, A.R., Ali, M.M.M., Abdel-Jaber, G.T., Saad, A.A., 2019, Control of wind turbine for variable speed based on auto-tuning fuzzy-PI controller, Proc. 2019 IEEE Conference on Power Electronics and Renewable Energy, Aswan, Egypt, pp. 63-68.

Morshed, M.J., Fekih, A., 2019, A novel fault ride through scheme for hybrid wind/PV power generation systems, IEEE Transactions on Sustainable Energy, 11(4), pp. 2427-2436.

Ali, M.M.M., Youssef, A.R., Abdel-Gaber, G.T., Ali, A.S., 2018, Adaptive fuzzy-PID based pitch angle control of wind turbine, Proc. 2018 20th International Middle East Power Systems Conference, Cairo, Egypt, pp. 1110-1114.

Demidova, G.L., Lukichev, D.V., Kuzin, A.Y., 2019, A genetic approach for auto-tuning of adaptive fuzzy PID control of a telescope’s tracking system, Procedia Computer Science, 150, pp. 495-502.

Oye, T.T., Gupta, N., Goh, K., Oye, T.K., 2020, Development of optimized smart indoor control for renewable air-conditioning, Proc. 2020 9th International Conference on Renewable Energy Research and Application, Glasgow, UK, pp. 175-179.

Preitl, S., Precup, R.-E., 2000, Control solution with auto-tuning PI controller for electrical driving systems, Scientific Bulletin of UPT, Transactions on Automatic Control and Computer Science, 45(1-2), pp. 47-55.

Preitl, S., Precup, R.-E., Solyom, S., Kovacs, L., Preitl, Z., 2002, Control solutions for electrical driving systems. Tuning methodologies for PI and PID controllers, in The Vth Edition of Timisoara’s Academic Days. Selected Papers, Trusculescu, M., Ancusa, V., Eds. Editura Orizonturi Universitare, Timisoara, pp. 69-86.

Preitl, S., Precup, R.-E., 1996, On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots, Scientific Bulletin of UPT, Transactions on Automatic Control and Computer Science, 41(2), pp. 47-55.

Preitl, S., Precup, R.-E., 1996, An extension of tuning relations after symmetrical optimum method for PI and PID controllers, Automatica, 35(10), pp. 1731-1736.

Galichet, S., Foulloy, L., 1995, Fuzzy controllers: synthesis and equivalences, IEEE Transactions on Fuzzy Systems, 3(2), 140-148.

Inteco, 2007, Modular Servo System, User’s Manual, Inteco Ltd., Krakow.

Precup, R.-E., David, R.-C., Petriu, E.M., 2017, Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, 64(1), 527-534.

Deliparaschos, K.M., Doyamis, G.C., Tzafestas, S.G., 2008, A parameterised genetic algorithm IP - core: FPGA - design, implementation and performance evaluation, International Journal of Electronics, 95(11), pp. 1149-1166.

Jozić, S., Bajić, D., Dumanić, I., Bagavac, Ž., 2021, Optimization for an efficient and highly productive turning process, Reports in Mechanical Engineering, 2(1), 212-221.

Osaba, E., Del Ser, J., Camacho, D., Bilbao, M.N., Yang, X.-S., 2020, Community detection in networks using bio-inspired optimization: Latest developments, new results and perspectives with a selection of recent meta-heuristics, Applied Soft Computing, 87. 106010.

Wang, G.-G., Tan, Y., 2019, Improving metaheuristic algorithms with information feedback models, IEEE Transactions on Cybernetics, 49(2), pp. 542-555.

Zhang, Y., Wang, G.-G., Li, K.-Q., Yeh, W.-C., Jian, M.-W., Dong, J.-Y., 2020, Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Information Sciences, 522, pp. 1-16.

Precup, R.-E., David, R.-C., Roman, R.-C., Szedlak-Stinean, A.-I, Petriu, E.M., 2021, Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm, International Journal of Systems Science, DOI: 10.1080/00207721.2021.1927236.

Bojan-Dragos, C.-A., Precup, R.-E., Preitl, S., Roman, R.-C., Hedrea, E.-L., Szedlak-Stinean, A.-I., 2021, GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems, IFAC-PapersOnLine, 54(4), pp. 189-194.

Božanić, D., Tešić, D., Marinković, D., Milić, A., 2021, Modeling of neuro-fuzzy system as a support in decision-making processes, Reports in Mechanical Engineering, 2(1), pp. 222-234.

Filip, F.G., 2021, Automation and computers and their contribution to human well-being and resilience, Studies in Informatics and Control, 30(4), pp. 5-18.

Marković, D., Petrovć, G., Ćojbašić, Ž, Stanković, A., 2020, The vehicle routing problem with stochastic demands in an urban area – a case study, Facta Universitatis-Series Mechanical Engineering, 18(1), pp. 107-120.

Andoga, R., Fozo, L., Schrötter, M., Češkovič, M., Szabo, S., Bréda, R., Schreiner, M., 2019, Intelligent thermal imaging-based diagnostics of turbojet engines, Applied Sciences, 2019, 2253.

Baranyi, P., Korondi, P., Patton, R.J., Hashimoto, H., 2004, Trade-off between approximation accuracy and complexity for TS fuzzy models, Asian Journal of Control, 6(1), pp. 21-33.

Yapici Pehlivan, N., Turksen, I.B., 2021, A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm, Romanian Journal of Information Science and Technology, 24(1), pp. 79-98.

Kwak, C.-J., Ri, K.-C., Kwak, S.-I., Kim, K.-J., Ryu, U.-S., Kwon, O.-C., Kim, N.-H., 2021, Fuzzy modus ponens and tollens based on moving distance in SISO fuzzy system, Romanian Journal of Information Science and Technology, 24(3), pp. 257-283.




DOI: https://doi.org/10.22190/FUME220111005P

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4