PULL-DOWN INSTABILITY OF THE QUADRATIC NONLINEAR OSCILLATORS
Abstract
A nonlinear vibration system, over a span of convincing periodic motion, might break out abruptly a catastrophic instability, but the lack of a theoretical tool has obscured the prediction of the outbreak. This paper deploys the amplitude-frequency formulation for nonlinear oscillators to reveal the critically important mechanism of the pseudo-periodic motion, and finds the quadratic nonlinear force contributes to the pull-down phenomenon in each cycle of the periodic motion, when the force reaches a threshold value, the pull-down instability occurs. A criterion for prediction of the pull-down instability is proposed and verified numerically.
Keywords
Full Text:
PDFReferences
Beléndez, A., Pascual, C., Beléndez, T., Hernández, A., 2009, Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method, Nonlinear Analysis: Real World Applications, 10(1), pp. 416-427.
Yeasmin, I.A., Rahman, M., Alam, M., 2021, The modified Lindstedt–Poincare method for solving quadratic nonlinear oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 40(3), pp. 1351-1368.
Yeasmin, I.A., Sharif, N., Rahman, M.S., Alam, M.S., 2022, Analytical technique for solving the quadratic nonlinear oscillator, Results in Physics, 18(2020), 103303.
Zhu, J.W., 2014, A new exact solution of a damped quadratic non-linear oscillator, Applied Mathematical Modelling, 38(24), pp. 5986-5993.
Scott, A.P., Radom, L., 1996, Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, Journal of Physical Chemistry, 100(41), pp. 16502-16513.
Yang, Q., 2023, A mathematical control for the pseudo-pull-in stability arising in a micro-electromechanical system, Journal of Low Frequency Noise, Vibration and Active Control, doi: 10.1177/14613484221133603
He, J.H., Yang, Q., He, C.H., Li, H.B., Buhe, E., 2022, Pull-in stability of a fractal system and its pull-in plateau, Fractals, 30(9), 2250185.
Luo, A.C.J., Yu, B., 2014, Bifurcation Trees of Periodic Motions to Chaos in a Parametric, Quadratic Nonlinear Oscillator, International Journal of Dynamics and Control, 24(5), 1450075.
Elias-Zuniga, A., Palacios-Pineda, L.M., Jimenez-Cedeno, I.H., et al., 2021, Equivalent power-form representation of the fractal Toda oscillator, Fractals, 29(2), 2150034.
Kurz, T., Lauterborn, W., 1988, Bifurcation structure of the Toda oscillator, Physical Review A, 37(3), pp. 1029-1031.
Feng, G.Q., Niu, J.Y., 2023, An analytical solution of the fractal Toda oscillator, Results in Physics, 44, 106208.
Feng, G.Q., Niu, J.Y., 2023, The analysis for the dynamic pull-in of a micro-electromechanical system, Journal of Low Frequency Noise, Vibration and Active Control, doi: 10.1177/14613484221145588
Liu, X.S., Zhang, L.J., Zhang, M.J., 2022, Studies on Pull-in instability of an electrostatic MEMS actuator: dynamical system approach, J. Appl. Anal., 12(2), pp. 850-861.
Sedighi, H.M., Keivani, M., Abadyan, M., 2015, Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect, Compos. B. Eng., 83, pp. 117-133.
Skrzypacz, P., Kadyrov, S., Nurakhmetov, D., Wei, D.M., 2019, Analysis of dynamic pull-in voltage of a graphene MEMS model, Nonlinear Anal Real World Appl., 45, pp. 581-589.
Skrzypacz, P., Wei, D.M., Nurakhmetov, D., Kostsov, E.G., et al., 2021, Analysis of dynamic pull-in voltage and response time for a micro-electro-mechanical oscillator made of power-law materials, Nonlinear Dyn., 105(1), pp. 227-240.
Aliasghary, M., Mobki, H., Ouakad, H.M., 2022, Pull-in Phenomenon in the Electrostatically Micro-switch Suspended between Two Conductive Plates using the Artificial Neural Network, Journal of Applied and Computational Mechanics, 8(4), pp. 1222-1235.
Molla, M.H.U., Razzak, M.A., Alam, M.S., 2017, An analytical technique for solving quadratic nonlinear oscillator, Multidiscipline Modeling in Materials and Structures, 13(3), pp. 424-433.
Mickens, R.E., 1981, An Introduction to Nonlinear Oscillations, Cambridge University Press, Cambridge, England.
Ma, H.J., 2022, Simplified Hamiltonian-Based frequency-amplitude formulation for nonlinear vibration systems, Facta Universitatis-Series Mechanical Engineering, 20(2), pp. 445-455.
Mirzabeigy, A., 2022, A Simple Approach for Dealing with Autonomous Conservative Oscillator under Initial Velocity, Journal of Applied and Computational Mechanics, 8(3), pp. 918-924.
El-Dib, Y.O., 2023, Properties of complex damping Helmholtz-Duffing oscillator arising in fluid mechanics, Journal of Low Frequency Noise, Vibration and Active Control, doi: 10.1177/14613484221138560
Mann, B.P., Sims, N.D., 2009, Energy harvesting from the nonlinear oscillations of magnetic levitation, Journal of Sound and Vibration, 319(1-2), pp. 515-530.
Beeby, S.P., Tudor, M.J., White, N.M., 2006, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17(12), pp. R175-R195.
Ginoux, J.M., Llibre, J., 2023, A family of periodic orbits for the extended Hamiltonian system of the Van der Pol oscillator, Journal of Geometry and Physics,183, 104705.
He, J.H., 2019, The simplest approach to nonlinear oscillators, Results Phys, 15, 102546.
Tian, Y., 2022, Frequency formula for a class of fractal vibration system, Reports in Mechanical Engineering, 3(1), pp. 55-61.
Feng, G.Q., 2021, He's frequency formula to fractal undamped Duffing equation, Journal of Low Frequency Noise, Vibration and Active Control, 40(4), pp. 1671-1676.
Elías-Zúñiga, A., Palacios-Pineda, L. M., Olvera-Trejo, D. , Martínez-Romero, O., 2022, Recent strategy to study fractal-order viscoelastic polymer materials using an ancient Chinese algorithm and He’s formulation, Journal of Low Frequency Noise, Vibration and Active Control, 41(3), pp. 842-851.
Belendez, A., Hernandez, A., Belendez, T., Fernandez, E., et al., 2007, Application of He's homotopy perturbation method to the Duffing-harmonic oscillator, International Journal of Nonlinear Sciences and Numerical Simulation, 8(1), pp. 79-88.
DOI: https://doi.org/10.22190/FUME230114007H
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4