EFFECT OF ISOTHERMAL AND ISOCHRONAL AGING ON THE MICROSTRUCTURE AND PRECIPITATE EVOLUTION IN BETA-QUENCHED N36 ZIRCONIUM ALLOY

Ali W. Aldeen, Dina Y. Mahdi, Chen Zhongwei, Imad A. Disher, Barhm Mohamad

DOI Number
10.22190/FUME230405019A
First page
Last page

Abstract


In this study, the effect of isothermal and isochronal aging is reported to investigate the precipitate evolution and recrystallization of N36 zirconium alloy after β-quenching. Two groups of samples were cut from the as-received sheet of N36 zirconium alloy and subjected to solution treatment and subsequent aging at 580, 640, and 700 °C for 40 and 600 min, respectively. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and electron backscattering diffraction (EBSD) were utilized to characterize the microstructure and second-phase particle (SPPs) evolution. Results show that the implemented quenching after solution treatment produces fine interlaced α-plates structure conserved inside prior β grain boundaries with 12 variant directions that follow Burger misorientation characteristics. After aging for a short time, initial α-plates conserve their shape and become softer, and SPPs spread along their boundaries. Recrystallizations are finished for specimens aged at a higher temperature or for a longer time. The recrystallized structure exhibits non-uniform grains and a random SPPs distribution. Despite the differences in morphology, some recrystallization grains retain the orientation feature from the initial α-plates. Hardness declines as temperature and time rise, and no hardness peak is seen. Roughness and wettability rise with increasing ageing temperatures.


Keywords

N36 zirconium alloy, Aging, Second phase particles, Recrystallization

Full Text:

PDF

References


Yang, S., Guo, Z., Zhao, L., Zhao, L., Guan, Q., Liu, Y., 2019, Surface microstructures and high-temperature high-pressure corrosion behavior of N18 zirconium alloy induced by high current pulsed electron beam irradiation, Appl. Surf. Sci., 484, pp. 453-460.

Liu, W., Li, Q., Zhou, B., Yan, Q., Yao, M., 2005, Effect of heat treatment on the microstructure and corrosion resistance of a Zr–Sn–Nb–Fe–Cr alloy, J. Nucl. Mater., 341, pp. 97-102.

Alat, E., Motta, A.T, Comstock, R.J., Partezana, J.M., Wolfe, D.E., 2015, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coatings Technol., 281, pp. 133-143.

Dekhtyar, A.I., Bondarchuk, V.I., Karasevska, O.P., Oryshych, D.V., Savvakin, D.G., Skoryk, M.A., 2019, Microstructure change under hot deformation in zirconium alloys synthesized by powder metallurgy, Mater. Charact., 158, 109949.

Kim, J.H., Lee, M.H., Choi, B.K., Jeong, Y.H., 2007, Effect of the hydrogen contents on the circumferential mechanical properties of zirconium alloy claddings, J. Alloys Compd., 431, pp. 155-161.

Chen, L., Li, J., Zhang, Y., Lu, W., Zhang, L.C., Wang, L., Zhang, D., 2016, Effect of low-temperature pre-deformation on precipitation behavior and microstructure of a Zr-Sn-Nb-Fe-Cu-O alloy during fabrication, J. Nucl. Sci. Technol. 53, pp. 496-507.

Chai, L., Luan, B., Murty, K.L., Liu, Q., 2013, Effect of predeformation on microstructural evolution of a Zr alloy during 550-700 °c aging after β quenching, Acta Mater., 61, pp. 3099–3109.

Fan, Q., Yuan, B., Xie, M., Shi, M., Zhou, J., Yang, Z., Zhao, W., 2019, Effects of hot rolling temperature and aging on the second phase particles of Zr-Sn-Nb-Fe zirconium alloy, Nucl. Mater. Energy, 20, 100700.

Aldeen, A.W., Chen, Z., Disher, I.A., Yan, K., Zhu, Y., 2022, Study of Initial β-Zr Formation in β-Quenched N36 Zirconium Alloy Using Dynamic and Metallographic Methods, Crystals. 12, 1535.

Tao, B., Qiu, R., Zhao, Y., Liu, Y., Tan, X., Luan, B., Liu, Q., 2018, Effects of alloying elements (Sn, Cr and Cu) on second phase particles in Zr-Sn-Nb-Fe-(Cr, Cu) alloys, J. Alloys Compd., 748, pp. 745-757.

He, G., Liu, J., Li, K., Hu, J., Mir, A.H., Lozano-Perez, S., Grovenor, C., 2019, Investigating the stability of second phase particles in Zr-Nb alloys under irradiation, J. Nucl. Mater., 526, 151738.

Liu, Y., Qiu, R., Luan, B., Hao, L., Tan, X., Tao, B., Zhao, Y., Li, F., Liu, Q., 2018, TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0 Sn-0.3 Nb-0.3 Fe-0.1 Cu alloy, J. Nucl. Mater., 504, pp. 79-83.

Yang, H.L., Kano, S., Matsukawa, Y., Li, Y.F., Shen, J.J., Zhao, Z.S., Li, F., Satoh, Y., Abe, H., 2016, Study on recrystallization and correlated mechanical properties in Mo-modified Zr-Nb alloys, Mater. Sci. Eng. A., 661, pp. 9-18.

Lee, H., Min Kim, K., Kim, J.S., Kim, Y.S., 2020, Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition, Nucl. Eng. Technol., 52, pp. 352-359.

Guo, W., Li, G., Yuan, F., Han, F., Zhang, Y., Ali, M., Ren, J., Yuan, G., 2021, Texture development and mechanical behavior of Zircaloy-4 alloy plates fabricated by cold rolling and annealing, Mater. Sci. Eng. A., 807, 140846.

Tewari, R., Srivastava, D., Dey, G.K., Chakravarty, J.K., Banerjee, S., 2008, Microstructural evolution in zirconium based alloys, J. Nucl. Mater., 383, pp. 153-171.

Li, Z.K., Zhou, L.A., Zhang, H.J., Wang, W.S., Jin, Z.H., 2004, The existing form of Nb in Zr-Sn-Nb-Fe alloys and its dependence on intermediate annealing, Rare Met. Mater. Eng., 33, pp. 1362-1364.

Luan, B.F., Chai, L.J., Chen, J.W., Zhang, M., Liu, Q., 2012, Growth behavior study of second phase particles in a Zr-Sn-Nb-Fe-Cr-Cu alloy, J. Nucl. Mater., 423, pp. 127–131.

Aldeen, A.W., Chen, Z.W., Disher, I.A., Zhu, Y., Yan, K., 2022, Growth Kinetics of Second Phase Particles in N36 Zirconium Alloy: Zr-Sn-Nb-Fe, J. Mater. Res. Technol., 17, pp. 2038-2046.

Chai, L.J., Luan, B.F., Gao, S.S., Chen, J.W., Liu, Q., 2012, Study of precipitate evolution and recrystallization of β-quenched Zr-Sn-Nb-Fe-Cr-Cu alloy during aging, J. Nucl. Mater., 427, pp. 274-281.

Gopalan, P., Rajaraman, R., Amarendra, G., Sundar, C.S., Viswanathan, B., Jayakumar, T., Palanichamy, P., Raj, B., 2005, Characterisation of β-quenched and thermally aged Zircaloy-2 by positron annihilation, hardness and ultrasonic velocity measurements, J. Nucl. Mater., 345, pp. 162-166.

Jayakumar, S., Ananthapadmanabhan, P.V., Perumal, K., Thiyagarajan, T.K., Mishra, S.C., Su, L.T., Tok, A.I.Y., Guo, J., 2011, Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 176, 2011, pp. 894-899.

Chai, L., Luan, B., Zhang, M., Murty, K.L., Liu, Q., 2013, Experimental observation of 12 α variants inherited from one β grain in a Zr alloy, J. Nucl. Mater., 440, pp. 377-381.

Dorić, H., Bolf, N., Šahnić, D., Development of Crystallization Calibration Model for Real-Time Monitoring of Fosamprenavir Calcium Particle Size Distribution, Tehnicki Vjesnik, 29, pp. 790-796.

Couet, A., Motta, A.T., Ambard, A., Comstock, R.J., 2018, Hydrogen pickup mechanism in zirconium alloys, In Comstock, R.J., Motta A.T. (Eds.), Zirconium in the Nuclear Industry: 18th International Symposium (pp. 312-349), ASTM Special Technical Publication; Vol. STP 1597, ASTM International. https://doi.org/10.1520/STP159720160055.

Garner, A., Gholinia, A., Frankel, P., Gass, M., Maclaren, I., Preuss, M., 2014, The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy, Acta Mater., 80, pp. 159-171.

Zhang, Q., Huo, X., Li, L., Chen, S., Lu, C., 2022, Correlation between Precipitation and Recrystallisation during Stress Relaxation in Titanium Microalloyed Steel, Metals, 12, 1920.

Bate, P., 2011, The effect of deformation on grain growth in Zener pinned systems, Acta Mater. 49, pp. 1453-1461.

Humphreys, F.J., Hatherly, M., 2012, Recrystallization and related annealing phenomena, Elsevier, Amsterdam, The Netherlands; Boston, MA, USA.

Korznikova, G., Korneva, A., Korznikova, E, 2020, Application of combined load for obtaining ultra-fine grained structure in magnetic alloys of the Fe-Cr-Co system, Reports in Mechanical Engineering, 1, pp. 1–9.

Yu, J., Yin, Z., Huang, Z., Zhao, S., Huang, H., Yu, K., Zhou, R., Xiao, H., 2022, Effect of Aging Treatment on Microstructural Evolution and Mechanical Properties of the Electron Beam Cold Hearth Melting Ti-6Al-4V Alloy, Materials, 15, 7122.

Wang, Y., Chai, L., Zhang, F., Chen, K., Guan, H., Luo, J., Li, Y., 2021, Effects of β-cooling rates on microstructural characteristics and hardness variation of a dual-phase Zr alloy, Int. J. Refract. Met. Hard Mater. 100, 105619.

Prince, M., Vinodh Kumar, A., Mohan Kumar, G., 2022, Investigation on Mechanical Properties of Aluminum 8011 Metal Matrix Compositewith Titanium Carbide Particulate Reinforcement, Tehnicki Vjesnik, 29, pp. 2105–2110.

Proff, C., Abolhassani, S., Dadras, M.M., Lemaignan, C., 2010, In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM, J. Nucl. Mater.. 404, pp. 97-108.

Abolhassani, S., Dadras, M., Leboeuf, M., Gavillet, D., 2003, In situ study of the oxidation of Zircaloy-4 by ESEM, J. Nucl. Mater., 321, pp. 70-77.

Park, J.-Y., Choi, B.-K., Yoo, S.J., Jeong, Y.H., Corrosion behavior and oxide properties of Zr–1.1 wt% Nb–0.05 wt% Cu alloy, J. Nucl. Mater., 359, pp. 59-68.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4