RECENT DEVELOPMENTS IN NATURAL FIBER HYBRID COMPOSITES FOR BALLISTIC APPLICATIONS: A COMPREHENSIVE REVIEW OF MECHANISMS AND FAILURE CRITERIA
Abstract
The use of lightweight natural fiber functional composites in the manufacturing of ballistic protective materials has garnered significant attention in recent years. This is due to their superior mechanical properties, cost-effectiveness, and environmental sustainability. Ballistic panels are constructed using multiple layers of diverse composites, which collectively exhibit excellent mechanical properties. These properties enable them to withstand strong impacts enhancing their capability for different applications in defense, military, and aerospace components. The primary focus of this review is to examine the different influential factors that govern the development of novel polymeric materials for current ballistic applications. It also explores various research approaches, such as experimental, analytical, numerical modeling, and empirical techniques. The review highlights both internal factors, such as material composition, and external factors, such as projectile parameters (e.g., nose angles, projectile shape, and projectile size). These factors are crucial for optimizing the robust ballistic performance of natural fiber-based polymer composites. In addition, various valuable insights to develop more effective and sustainable ballistic protective materials for applications in bulletproof helmets, defense, aerospace, and military sectors have also been elaborated. Consequently, the article presents a comprehensive review of the impact of utilizing various natural fibers as alternative materials to Kevlar for armor structures, offering a state-of-the-art perspective and challenges faced in full-scale implementation.
Keywords
Full Text:
PDFReferences
Nurazzi, NM., Asyraf, MRM., Khalina, A., 2021, A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications, Polymers (Basel), 13, 646.
Bhat, A., Naveen J., Jawaid M., 2021, Advancement in fiber reinforced polymer, metal alloys and multi-layered armour systems for ballistic applications – A review, Journal of Materials Research and Technology, 15, pp. 1300–1317.
Rakeshkumar C, R., Jayakumar, KS., 2023, Ballistic impact assessment of Aluminium Alloy 7075 T6, Kevlar and basalt fiber reinforced composite laminate with different nano fillers, Mater Res Express, 10, 025309.
Wu, S., Sikdar, P., Bhat, GS., 2022, Recent progress in developing ballistic and anti-impact materials Nanotechnology and main approaches, Defence Technology, 21, pp. 33-61.
Chang, BP., Mohanty, AK., Misra, M., 2020, Studies on durability of sustainable biobased composites: a review, RSC Advances, 10, pp. 17955–17999.
Naveen, J., Jawaid, M., Zainudin, E.S., Sultan, M.T., Yahaya, R., 2019, Evaluation of ballistic performance of hybrid Kevlar ® / Cocos nucifera sheath reinforced epoxy composites, The Journal of The Textile Institute, 110(8), pp. 1179–1189.
Pinheiro, M.A., Gomes, L.G., Silva, A.C.R.D., Candido, V.S., Reis, R.H.M., Monteiro, S.N., 2019, Guaruman: A Natural Amazonian Fiber with Potential for Polymer Composite Reinforcement, Materials Research, 22, e20190092.
Reis, R.H.M., Nunes, L.F., da Luz, F.S., Candido, V.S., da Silva, A.C.R., Monteiro, S.N., 2021, Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target, Polymers (Basel), 13(8), 1203.
Rohen, L.A., Margem, F.M., Monteiro, S.N., Vieira, C.M.F., Madeira de Araujo, B., Lima, E.S., 2015, Ballistic Efficiency of an Individual Epoxy Composite Reinforced with Sisal Fibers in Multilayered Armor, Materials Research, 18(2), pp. 55–62.
Braga, F.D.O., Bolzan, L.T., Ramos, F.J.H.T.V., Monteiro, S.N., Lima, É.P., Silva, L.C.D., 2018, Ballistic Efficiency of Multilayered Armor Systems with Sisal Fiber Polyester Composites, Materials Research, 20, pp. 767–774.
Garcia Filho, F.D.C., Oliveira, M.S., Pereira, A.C., Nascimento, L.F.C., Matheus, J.R.G., Monteiro, S.N., 2020, Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition, Journal of Materials Research and Technology, 9(2), pp. 1734–1741.
Luz, F.S.D., Monteiro, S.N., Lima, E.S., Lima, É.P., 2017, Ballistic Application of Coir Fiber Reinforced Epoxy Composite in Multilayered Armor, Materials Research, 20(2), pp. 23–28.
Monteiro, S.N., Milanezi, T.L., Louro, L.H.L., Lima Jr, E.P., Braga, F.O., Gomes, A.V., Drelich, J.W., 2016, Novel ballistic ramie fabric composite competing with KevlarTM fabric in multilayered armor, Materials & Design, 96, pp. 263–269.
Monteiro, S.N., Louro, L.H.L., Trindade, W., Elias, C.N., Ferreira, C.L., de Sousa Lima, E., Weber, R.P., Miguez Suarez, J.C., Da Silva Figueiredo, A.B.H., Pinheiro, W.A., Da Silva, L.C., 2015, Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor, Metallurgical and Materials Transactions A, 46, pp. 4567–4577.
da Silva, L.C., Oliveira, M.S., da Cruz Demosthenes, L.C., Bezerra, W.B.A., Monteiro, S.N.2019, Ballistic Tests of Epoxy Matrix Composites Reinforced with Arapaima Fish Scales, Green Materials Engineering- An EPD Symposium in Honor of Sergio Monteiro, The Minerals, Metals & Materials Series, Springer, Cham., pp. 169–175.
de Oliveira Braga, F., Bolzan, L.T., Lima Jr, É.P., Monteiro, S.N., 2017, Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor, Journal of Materials Research and Technology, 6(4), pp. 323–328.
Luz, F.S.D., Garcia Filho, F.D.C., Oliveira, M.S., Nascimento, L.F.C., Monteiro, S.N., 2020, Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison, Polymers (Basel), 12(9), 1920.
Naveen, J., Jayakrishna, K., Hameed Sultan, M.T.B., Amir, S.M.M., 2020, Ballistic Performance of Natural Fiber Based Soft and Hard Body Armour- A Mini Review, Frontiers in Materials, 7, 608139.
Doddamani, S., Kulkarni, S.M., Joladarashi, S., TS, M.K., Gurjar, A.K., 2023, Analysis of light weight natural fiber composites against ballistic impact: A Review, International Journal of Lightweight Materials and Manufacture, 6(3), pp. 450-468.
Dewangan, M.K., Panigrahi, S.K., 2021, Factors influencing the ballistic impact mechanisms of textile composite materials: A review, Polymers for Advanced Technologies, 32(5), pp. 1901–1923.
Goda, I., 2022, Ballistic resistance and energy dissipation of woven-fabric composite targets: Insights on the effects of projectile shape and obliquity angle, Defence Technology, 21, pp. 14-32.
Liu, H., Zhou, Y., Chen, L., Pan, X., Zhu, S., Liu, T., Li, W., 2023, Drop-weight impact responses and energy absorption of lightweight glass fiber reinforced polypropylene composite hierarchical cylindrical structures, Thin-Walled Structures, 184, p. 110468.
Aminudin, I.R., Aritonang, S., 2023, Potential of natural fiber composite materials for bulletproof vest applications, Defense and Security Studies, 4, pp. 8–14.
Abdollahiparsa, H., Shahmirzaloo, A., Teuffel, P., Blok, R.,2023, A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs), Composites and Advanced Materials, https://doi.org/10.1177/26349833221147540.
Ismail, SO., Akpan, E., Dhakal, HN., 2022, Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives, Composites Part C, 9, 100322.
Wang, L., Kanesalingam, S., Nayak, R., Padhye, R., 2014, Recent Trends in Ballistic Protection, Textiles and Light Industrial Science and Technology, 3, pp. 37-47.
Rajput, A., Sunny, M.R., Sarkar, A., 2023, Optimization of honeycomb parameters of sandwich composites for energy and specific energy absorption using particle swarm optimization, Marine Structures, 92,103498.
Gower, HL., Cronin, DS., Plumtree, A., 2008, Ballistic impact response of laminated composite panels, International Journal of Impact Engineering, 35(9), pp. 1000–1008.
Lim, B.H., Chu, J.M., Gao, J., Claus, B., Nie, Y., Chen, W., 2019, The Effect of Projectile Nose Shape on the Critical Velocity of High-Performance Yarn, Fibers, 7(4), p. 29.
Chen, X., Zhu, F., Wells, G., 2013, An analytical model for ballistic impact on textile-based body armour, Composites Part B: Engineering, 45(1), pp. 1508–1514.
Naik, N.K., Shrirao, P., Reddy, B.C.K., 2006, Ballistic impact behaviour of woven fabric composites:Formulation, International Journal of Impact Engineering, 32(9), pp. 1521–1552.
Abtew, M.A., Boussu, F., Bruniaux, P., Loghin, C., Cristian, I., 2019, Ballistic impact mechanisms – A review on textiles and fibre-reinforced composites impact responses, Composite structures, 223, 110966.
Talebi, H., Wong, S.V., Hamouda, A.M.S., 2009, Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite structures, 87(4), pp. 314–320.
Ghosh, A., Das, S., 2023, Testing and evaluation of technical textiles, In: Functional and Technical Textiles. Elsevier, USA, pp. 717–756.
Khalili, S.M.R., Beigpour, R., Mahajan, P., 2023, Strain rate dependency of lightweight hybrid green composite laminate-an experimental study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 283.
Ballistic Resistance of Body Armor NIJ Standard-0101.06. National Institute of Justice, U.S., Department of Justice, pp. 223054
Xu, S., Li, Y., Zhou, S., Jiang, X., Xie, W., Zhang, W., 2023, Ballistic performance and damage analysis of CFRP laminates under uniaxial pretension and precompression, International Journal of Impact Engineering, 178, 104620.
Rob Kinsler., Comparison of V50 Shot Placement on Final Outcome, Conference: Personal Armour Systems Symposium (PASS), 17 September 2012, Germany, pp. 1-10
Cavallaro, Paul V., 2011, Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics, NUWC-NPT Technical Report 12,057, Rhode Island, USA.
Ojoc, G.G., Pirvu, C., Sandu, S., Deleanu, L., 2020, Standardization in testing ballistic protection systems, IOP Conference Series: Materials Science and Engineering, 724(1), 012049.
Bandaru, A.K., Vetiyatil, L., Ahmad, S., 2015, The effect of hybridization on the ballistic impact behavior of hybrid composite armors, Composites Part B: Engineering, 76, pp. 300–319.
Swolfs, Y., Gorbatikh, L., Verpoest, I., 2014, Fibre hybridisation in polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 67, pp. 181–200.
Sinan Üstün, H., Kaan Toksoy, A., Tanoğlu, M., 2022, Investigation of hybridization effect on ballistic performance of multi-layered fiber reinforced composite structures, Journal of Composite Materials, 56(15), pp. 2411–2431.
Vasudevan, A., Senthil Kumaran, S., Naresh, K., Velmurugan, R., Shankar, K. 2018, Advanced 3D and 2D damage assessment of low velocity impact response of glass and Kevlar fiber reinforced epoxy hybrid composites, Advances in Materials and Processing Technologies, 4(3), pp. 493–510.
Yang, Z., Liu, J., Wang, F., Li, S., Feng, X., 2019, Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composite, Composite Structures, 229, 111434.
Al-Kinani, R., Najim, F. and De Moura, M.F.S.F., 2014, The Effect of Hybridization on the GFRP Behavior under Quasi-Static Penetration, Mechanics of Advanced Materials and Structures, 21(2), pp. 81–87.
Park, R., Jang, J., 2001, Impact behavior of aramid fiber/glass fiber hybrid composites: The effect of stacking sequence, Polymer Composites, 22(1), pp. 80–89.
Wan, Y.Z., Lian, J.J., Huang, Y., He, F., Wang, Y.L., Jiang, H.J., Xin, J.Y. 2007, Preparation and characterization of three-dimensional braided carbon/Kevlar/epoxy hybrid composites, Journal of materials science, 42, pp. 1343–1350.
Korkmaz, M., Okur, A., Labanieh, A.R. and Boussu, F., 2022, Investigation of the mechanical and forming behaviour of 3D warp interlock carbon woven fabrics for complex shape of composite material, Journal of Industrial Textiles, 51(3 suppl), pp. 5427S-5465S.
El Messiry, M., Eltahan, E., 2016, Stab resistance of triaxial woven fabrics for soft body armor, Journal of Industrial Textiles, 45(5), pp. 1062–1082.
Sun, B., Liu, Y., Gu, B., 2009, A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite, Composites Part B: Engineering, 40(6), pp. 552–560.
Luo, Y., Lv, L., Sun, B., Qiu, Y., Gu, B., 2007, Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites, Composite Structures, 81(2), pp. 202–209.
Kumaresan Gladys, A., Muthuvelu, V.S., Kumar, K., Ganesh, K., 2022, Energy absorption performance of Kevlar/snake grass fiber composites under ballistic impact test with nano Al2O3 inclusion, Polymer Composites, 43(9), pp. 6082–6095.
Nugroho, A., Sufiandi, S., Syahrial, A.Z. 2022, Energy absorption of densified veneer-aramid hybrid composites subjected to ballistic impact, Heliyon, 8(8), e10271.
Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., Zainudin, E.S., 2016, Investigating ballistic impact properties of woven kenaf-aramid hybrid composites, Fibers and Polymers, 17, pp. 275–281.
Pagnoncelli, M., Piroli, V., Romanzini, D., Pereira, I.M., Rodrigues Dias, R., Amico, S.C., Zattera, A.J., 2018, Mechanical and ballistic analysis of aramid/vinyl ester composites, Journal of Composite Materials, 52(3), pp. 289–299.
Salman, S.D., Leman, Z., Sultan, M.T., Ishak, M.R., Cardona, F., 2016, Ballistic Impact Resistance of Plain Woven Kenaf/Aramid Reinforced Polyvinyl Butyral Laminated Hybrid Composite, Bioresources, 11(3), pp.7282-7295.
Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., Zainudin, E.S., 2016, Measurement of ballistic impact properties of woven kenaf–aramid hybrid composites, Measurement, 77, pp. 335–343.
Bulut, M., Erkliğ, A., Yeter, E., 2016, Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates, Composites Part B: Engineering, 98, pp. 9–22.
Roylance, D., 2020, Impact of Textile Structures, In Encyclopedia of Continuum Mechanics, Springer Berlin Heidelberg, pp. 1288–1297.
Bilisik, K., Karaduman, N.S., Bilisik, NE., 2016, Fiber Architectures for Composite Applications, In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer-Singapore, pp. 75–134.
Kordani, N., 2023, Materials, design, and technology of body armor, In: Advances in Healthcare and Protective Textiles. Woodhead publishing, USA, pp. 259–301.
Shi, X., Sun, Y., Xu, J., Chen, L., Zhang, C., Zhang, G., 2023, Effect of Fiber Fraction on Ballistic Impact Behavior of 3D Woven Composites, Polymers (Basel), 15(5), 1170.
Biradar, A., Arulvel, S., Kandasamy, J., 2023, Significance of ballistic parameters and nanohybridization in the development of textile-based body armor: A review, International Journal of Impact Engineering, 180, 104700.
Lin, C.C., Lin, C.M., Huang, C.C., Lou, C.W., Meng, H.H., Hsu, C.H., Lin, J.H., 2009, Elucidating the Design and Impact Properties of Composite Nonwoven Fabrics with Various Filaments in Bulletproof Vest Cushion Layer, Textile Research Journal, 79(3), pp. 268–274.
Erol, O., Powers, BM., Keefe, M., 2017, Effects of weave architecture and mesoscale material properties on the macroscale mechanical response of advanced woven fabrics, Composites Part A: Applied Science and Manufacturing, 101, pp. 554–566.
Vasudevan, A., Kumaran, S.S., Naresh, K., Velmurugan, R., 2020, Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography, International Journal of Crashworthiness, 25(1), pp. 9–23.
Wang, Y., Chen, X., Young, R., Kinloch, I., Garry, W., 2016, An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels, Textile Research Journal, 86(1), pp. 34–43.
Min, S., Chu, Y., Chen, X., 2016, Numerical study on mechanisms of angle-plied panels for ballistic protection, Materials & Design, 90, pp. 896–905.
Nilakantan, G., Nutt, S., 2018, Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets, Defence Technology, 14(3), pp. 165–178.
Dewangan, MK., Panigrahi, SK., 2020, Multi‐scale modeling of three‐dimensional angle interlock woven composite subjected to ballistic impact using FEM, Polymers for Advanced Technologies, 31(12), pp. 3079–3094.
Sayer, M., Bektaş, N.B., Sayman, O., 2010, An experimental investigation on the impact behavior of hybrid composite plates, Composite Structures, 92(5), pp. 1256–1262.
Porwal, P.K., Phoenix, S.L., 2005, Modeling System Effects in Ballistic Impact into Multi-layered Fibrous Materials for Soft Body Armor, International journal of fracture, 135, pp. 217–249.
Jordan, J.B., Naito, C.J., 2014, An experimental investigation of the effect of nose shape on fragments penetrating GFRP, International Journal of Impact Engineering, 63, pp. 63–71.
Dogan, S., Arman, Y., Dogan, A., 2023, Effect of impactor nose form on the impact behavior of reinforced composite materials, Materials Testing, 65(8), pp. 1254–1262.
Zhou, Y., Chen, X., 2015, A numerical investigation into the influence of fabric construction on ballistic performance, Composites Part B: Engineering, 76, pp. 209–217.
Stopforth, R., Adali, S., 2019, Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles, Defence Technology, 15(2), pp. 186–192.
Shaktivesh, Nair N., Naik, N., 2015, Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation, International Journal of Damage Mechanics, 24(1), pp. 116–150.
Bandaru, A.K., Patel, S., Sachan, Y., Alagirusamy, R., Bhatnagar, N., Ahmad, S., 2016, Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites, Materials & Design, 105, pp. 323–332.
Bandaru, A.K., Chavan, V.V., Ahmad, S., Alagirusamy, R., Bhatnagar, N., 2016, Low velocity impact response of 2D and 3D Kevlar/polypropylene composites, International Journal of Impact Engineering, 93, pp. 136–143.
Jia, X., Sun, B., Gu, B., 2011, Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite: a finite element study at microstructure level, Journal of Composite Materials, 45(9), pp. 965–987.
Sabet, A., Fagih, N., Beheshty, M.H., 2011, Effect of reinforcement type on high velocity impact response of GRP plates using a sharp tip projectile, International Journal of Impact Engineering, 38(8-9), pp. 715–722.
Lee, B.L., Song, J.W., Ward, J.E., 1994, Failure of Spectra® Polyethylene Fiber-Reinforced Composites under Ballistic Impact Loading, Journal of Composite Materials, 28(13), pp. 1202–1226.
Flanagan, M.P., Zikry, M.A., Wall, J.W., El-Shiekh, A., 1999, An Experimental Investigation of High Velocity Impact and Penetration Failure Modes in Textile Composites, Journal of Composite Materials, 33(12), pp. 1080–1103.
Mines, R.A.W., Roach, A.M., Jones, N., 1999, High velocity perforation behaviour of polymer composite laminates, International Journal of Impact Engineering, 22(6), pp. 561–588.
Chu, C.K., Chen, Y.L., Hseu, G.C., Hwang, D.G., 2007, The Study of Obliquity on the Ballistic Performance of Basket Fabric Composite Materials, Journal of Composite Materials, 41(13), pp. 1539–1558.
Arora, S., Majumdar, A., Butola, B.S., 2020, Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response, Composite Structures, 233, 111720.
Zhao, L., Qian, X., Sun, Y., Yuan, M., Tang, F., Zhao, Y., Zhang, Q., Chen, Y., 2018, Ballistic behaviors of injection-molded honeycomb composite, Journal of Materials Science, 53(20), pp. 14287–14298.
Latif, R., Wakeel, S., Zaman Khan, N., Noor Siddiquee, A., Lal Verma, S., Akhtar Khan, Z.,2019, Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review, Journal of Reinforced Plastics and Composites, 38(1), pp. 15–30.
Mohammed, M., Rahman, R., Mohammed, A.M., Betar, B.O., Osman, A.F., Adam, T., Dahham, O.S., Gopinath, S.C., 2022, Improving hydrophobicity and compatibility between kenaf fiber and polymer composite by surface treatment with inorganic nanoparticles, Arabian Journal of Chemistry, 15(11), 104233.
Birniwa, A.H., Abdullahi, S.S.A., Ali, M., Mohammad, R.E.A., Jagaba, A.H., Amran, M., Avudaiappan, S., Maureira-Carsalade, N., Flores, E.I.S., 2023, Recent trends in treatment and fabrication of plant-based fiber-reinforced epoxy composite: A review, Journal of Composites Science, 7(3), 120.
Chen, S., Bourham, M., Rabiei, A., 2014, Novel light-weight materials for shielding gamma ray, Radiation Physics and Chemistry, 96, pp. 27–37.
Rajeshkumar, L., Kumar, PS., Ramesh, M., 2023, Assessment of biodegradation of lignocellulosic fiber-based composites – A systematic review, International Journal of Biological Macromolecules, 253, 127237.
Phiri, R., Rangappa, S., Siengchin, S., Marinkovic, D., 2023, Agro-waste natural fiber sample preparation techniques for bio-composites development: methodological insights, Facta Universitatis-Series Mechanical Engineering, 21(4), pp. 631-656.
Salman, S.D., Leman, Z., Sultan, M.T.H., Ishak, M.R., Cardona, F., 2017, Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites, Textile Research Journal, 87(17), pp. 2051–2065.
dos Santos Alves, A.L., Nascimento, L.F.C., Suarez, J.C.M., 2005, Influence of weathering and gamma irradiation on the mechanical and ballistic behavior of UHMWPE composite armor, Polymer Testing, 24(1), pp. 104–113.
Figueiredo, A.B.H.D.S., Vital, H.D.C., Weber, R.P., Lima Júnior, É.P., Rodrigues, J.G.P., Aguilera, L.D.S., Biasi, R.S.D., 2019, Ballistic Tests of Alumina-UHMWPE Composites Submitted to Gamma Radiation, Materials Research, 22, e20190251.
Li, Y., Mai, Y-W., Ye, L., 2005, Effects of fibre surface treatment on mechanical properties of sisal-fiber composites, Composite Interfaces, 12(1-2), pp. 141–163.
Chen, G., Luo, H., 2020, Effects of node with discontinuous hierarchical fibers on the tensile fracture behaviors of natural bamboo, Sustainable Materials and Technologies, 26, e00228.
Akhavan-Safar, A., Salamat-Talab, M., Delzendehrooy, F., Barbosa, A.Q., da Silva, L.F.M., 2021, Mode II fracture energy of laminated composites enhanced with micro-cork particles, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 490.
Ko, S., Davey, J., Douglass, S., Yang, J., Tuttle, M.E., Salviato, M., 2019, Effect of the thickness on the fracturing behavior of discontinuous fiber composite structures, Composites Part A: Applied Science and Manufacturing, 125, 105520.
Khalid, M.Y., Al Rashid, A., Arif, Z.U., Ahmed, W., Arshad, H., Zaidi, A.A., 2021, Natural fiber reinforced composites: Sustainable materials for emerging applications, Results in Engineering, 11, 100263.
Xu, L.Z., Ren, W.K., Wang, J.B., Wang, X.D., Gao, G.F., 2023, An experimental investigation into ballistic performance of woven fabrics with single and multiple layers, Textile Research Journal, 93(9-10), pp. 2394–2408.
Li, Z., Xue, Y., Sun, B., Gu, B., 2023, Hybrid ratio optimizations on ballistic penetration of carbon Kevlar UHMWPE fiber laminates, International Journal of Mechanical Sciences, 258, 108585.
Chen, L., Cao, M., Fang, Q., 2021, Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness, International Journal of Impact Engineering, 156, 103931.
Zhang, R., Han, B., Zhong, J.Y., Qiang, L.S., Ni, C.Y., Zhang, Q., Zhang, Q.C., Li, B.C., Lu, T.J., 2022, Enhanced ballistic resistance of multilayered UHMWPE laminated plates, International Journal of Impact Engineering, 159, 104035.
Kumar, S.D., Samvel, R., Aravindh, M., Vibin, R.A., Poovarasu, E., Prasad, M.S., 2023, Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications –A brief review, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.03.679.
Gloger, M., Stempien, Z., Pinkos, J., 2023, Numerical and experimental investigation of the ballistic performance of hybrid woven and embroidered-based soft armour under ballistic impact, Composite Structures, 322, 117420.
Moure, M.M., Rubio, I., Aranda-Ruiz, J., Loya, J.A., Rodríguez-Millán, M., 2018, Analysis of impact energy absorption by lightweight aramid structure, Composite Structures, 203, pp. 917–926.
Min, S., Chen, X., Chai, Y., Lowe, T.,2016, Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabric, Composites Part B: Engineering, 90, pp. 30–36.
Karthikeyan, K., Russell, BP., 2014, Polyethylene ballistic laminates: Failure mechanics and interface effect, Materials & Design, 63, pp. 115–125.
Chen, X., Zhou, Y., Wells, G., 2014, Numerical and experimental investigations into ballistic performance of hybrid fabric panels, Composites Part B: Engineering, 58, pp. 35–42.
Claus, J., Santos, R.A., Gorbatikh, L., Swolfs, Y., 2020, Effect of matrix and fibre type on the impact resistance of woven composites, Composites Part B: Engineering, 183, 107736.
da Silva Chagas, N.P., de Oliveira Aguiar, V., da Costa Garcia Filho, F., da Silva Figueiredo, A.B.H., Monteiro, S.N., Huaman, N.R.C., Marques, M.D.F.V., 2022, Ballistic performance of boron carbide nanoparticles reinforced ultra-high molecular weight polyethylene (UHMWPE), Journal of Materials Research and Technology, 17, pp. 1799–1811.
Sharma, S., Dhakate, S.R., Majumdar, A., Singh, B.P., 2019, Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites, Carbon, 152, pp. 631–642.
Arora, S., Majumdar, A., Butola, B.S., 2020, Deciphering the structure-induced impact response of ZnO nanorod grafted UHMWPE woven fabrics, Thin-Walled Structures, 156, pp. 106991.
Chatterjee, V.A., Verma, S.K., Bhattacharjee, D., Biswas, I., Neogi, S.,2019, Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact, Composite Structures, 225, 111148.
Gopinath, G., Zheng, J.Q., Batra, R.C., 2012, Effect of matrix on ballistic performance of soft body armor, Compos Struct, 94(9), pp. 2690–2696.
Sapozhnikov, S., Kudryavtsev, O., 2015, Modeling of Thermoplastic Composites in Protective Structures, Mechanics of Composite Materials, 51, pp. 419–426.
Oladele, I.O., Onuh, L.N., Siengchin, S., Sanjay, M.R., Adelani, S.O., 2023, Modern Applications of Polymer Composites in Structural Industries:A Review of Philosophies, Product Development, and Graphical Applications, Applied Science and Engineering Progress, 17(1), 6884.
Han, F., Zhang, Y., Wang, C., Wang, Z., Yue, H., Zong, L., Wang, J., Jian, X., 2023, Analysis of ballistic performance and penetration damage mechanisms of aramid woven fabric reinforced polycarbonate composites with different matrix content, Chemical Engineering Journal, 453, 139470.
Mahesh, V., Joladarashi, S., Kulkarni, S.M., 2021, A comprehensive review on material selection for polymer matrix composites subjected to impact load, Defence Technology, 17(1), pp. 257–277.
Evci, C., 2015, Thickness-dependent energy dissipation of laminated composites subjected to low velocity impact, Composite Structures, 133, pp. 508–521.
Mulage, K.S., Mishra, A.K., Patkar, R.N., Kharat, S.H., Khanna, P.K., Kakade, S.D., 2012, Effect of Ballistic Modifiers on the burn rate of extruded composite propellant formulations based on Thermoplastic elastomeric binder, International Journal of Energetic Materials and Chemical Propulsion, 11(4), pp. 375–388.
Khaire, N., Tiwari, G., 2023, Ballistic response of sandwich shell panels: A comparative study, International Journal of Impact Engineering, 176, 104548.
Mohan Kumar, T.S., Joladarashi, S., Kulkarni, S.M., Doddamani, S. 2023, Optimization of process parameters for ballistic impact response of hybrid sandwich composites, International Journal on Interactive Design and Manufacturing (IJIDeM), 17(3), pp. 1099–1111.
Ding, Y., Liu, J., Hall, Z.E., Brooks, R.A., Liu, H., Kinloch, A.J., Dear, J.P., 2023, Damage and energy absorption behaviour of composite laminates under impact loading using different impactor geometries, Composite Structures, 321, 117259.
Dundi, R.K., Amin, P.N., Mathivanan, N.R., 2023, Analysis of factors influencing absorbed energy in CFRP and Kevlar hybrid laminate subjected to low-velocity impact, Australian Journal of Multi-Disciplinary Engineering, 19(1), pp. 1–9.
Reddy, T.S., Mogulanna, K., Reddy, K.G., Reddy, P.R.S., Madhu, V., 2019, Effect of thickness on behaviour of E-glass/epoxy composite laminates under low velocity impact, Procedia Structural Integrity, 14, pp. 265–272.
Deng, Y., Wang, Y., Cai, X., Du, J., Wei, G., 2023, Influence of thickness on impact resistance of glass fiber woven composite laminates, Journal of Applied Polymer Science, 140(27), e53791.
Nunes, S.G., Scazzosi, R., Manes, A., Amico, S.C., de Amorim Júnior, W.F., Giglio, M., 2019, Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study, International Journal of Impact Engineering, 132, 103307.
Senthil Kumar, M.S., Rajeshkumar, L., Rangappa, S.M., Siengchin, S., 2024, Mechanical behaviour analysis for banana/coir natural fiber hybrid epoxy composites through experimental modelling, Journal of Polymer Research, 31(6), 163.
Quaresimin, M., Ricotta, M., Martello, L., Mian, S., 2013, Energy absorption in composite laminates under impact loading, Composites Part B: Engineering, 44(1), pp. 133–140.
De Morais, W.A., Monteiro, S.N., d'Almeida, J.R.M., 2005, Evaluation of repeated low energy impact damage in carbon–epoxy composite materials, Composite Structures, 67(3), pp. 307–315.
Braga, F.D.O., Lima, É.P., Lima, E.D.S., Monteiro, S.N.,2017, The effect of thickness on aramid fabric laminates subjected to 7.62 mm ammunition ballistic impact, Materials Research, 20, pp. 676–680.
Nguyen, L.H., Ryan, S., Cimpoeru, S.J., Mouritz, A.P., Orifici, A.C., 2015, The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite, International Journal of Impact Engineering, 75, pp. 174–183.
Naik, N.K., Doshi, A.V., 2008, Ballistic impact behaviour of thick composites: Parametric studies, Composite structures, 82(3), pp. 447–464.
Naik, N.K., Shrirao, P., Reddy, B.C.K., 2005, Ballistic impact behaviour of woven fabric composites: Parametric studies, Materials Science and Engineering: A, 412(1-2), pp. 104–116.
Chen, W., Hudspeth, M., Guo, Z., Lim, B.H., Horner, S., Zheng, J.Q., 2017. Multi-scale experiments on soft body armors under projectile normal impact, International Journal of Impact Engineering, 108, pp.63-72.
Garcia-Castillo, S.K., Sánchez-Sáez, S., Barbero, E., 2012, Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts, Journal of Strain Analysis for Engineering Design, 47(7), pp. 444–452.
Alonso, L., Navarro, C., García-Castillo, S.K., 2019, Experimental study of woven-laminates structures subjected to high-velocity impact, Mechanics of Advanced Materials and Structures, 26(12), pp. 1001–1007.
Cantwell, WJ., Morton, J., 1990, Impact perforation of carbon fibre reinforced plastic, Composites science and technology, 38(2), pp. 119–141.
Ulven, C., Vaidya, U.K., Hosur, M.V., 2003, Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels, Composite structures, 61(1-2), pp. 143–150.
Reddy, P.R.S., Reddy, T.S., Srikanth, I., Kushwaha, J., Madhu, V., 2020, Development of cost-effective personnel armour through structural hybridization, Defence Technology, 16(6), pp. 1089–1097.
Ali, A., Adawiyah, R., Rassiah, K., Ng, W.K., Arifin, F., Othman, F., Hazin, M.S., Faidzi, M.K., Abdullah, M.F., Ahmad, M.M.,2019, Ballistic impact properties of woven bamboo- woven E-glass- unsaturated polyester hybrid composites, Defence Technology, 15(3), pp. 282–294.
Zhu, L., Gao, W., Dikin, D.A., Percec, S., Ren, F., 2023, Anti-Ballistic Performance of PPTA/UHMWPE Laminates, Polymers (Basel), 15(10), 2281.
Yang, Y., Ling, T., Liu, Y., Xue, S., 2021, Synergistic effect of hybrid ballistic soft armour panels, Composite Structures, 272, 114211.
Barhoumi, H., Bhouri, N., Feki, I., Baffoun, A., Hamdaoui, M., Ben Abdessalem, S., 2023, Review of ballistic protection materials: Properties and performances, Journal of Reinforced Plastics and Composites, 42(13-14), pp. 685–699.
He, Y., Min, S., Chen, S., Wang, J., Wang, Z., Zhou, Y., 2023, Effect of Z-binding depths on the ballistic performance of 3D woven through-the-thickness angle-interlock fabrics, Journal of Industrial Textiles, 53, https://doi.org/10.1177/15280837231188528.
Yang, Y., Chen, X., 2017, Investigation of failure modes and influence on ballistic performance of Ultra-High Molecular Weight Polyethylene (UHMWPE) uni-directional laminate for hybrid design, Composite Structures, 174, pp. 233–243.
Ballistic Resistance of Body Armor NIJ Standard-0101.06, National Institute of Justice, https, pp.//nij.ojp.gov/library/publications/ballistic-resistance-body-armor-nij-standard-010106 (Last access 7 August 2023).
Berrouane, A., Derradji, M., Khiari, K., Amri, B., Mehelli, O., Abdous, S., Zegaoui, A., Ramdani, N., Belgacemi, R., Liu, W., 2023, New strategy for the development of lightweight ballistic armors with limited backface signature, High Performance Polymers, 35(5), pp. 533–544.
Xie, Y.C., Zhang, H., Zhu, W., Huang, G.Y., 2022, Effects of textile structure and projectile geometry on ballistic performance of UHMWPE textiles, Composite Structures, 279, 114785.
Abtew, M.A., Boussu, F., Bruniaux, P., Loghin, C., Cristian, I., 2019, Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body armour applications, Composite Structures, 225, 111179.
Carrillo, J.G., Gamboa, R.A., Flores-Johnson, E.A., Gonzalez-Chi, P.I., 2012, Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix, Polymer Testing, 31(4), pp. 512–519.
Karahan, M., Jabbar, A., Karahan, N., 2015, Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites, Journal of Reinforced Plastics and Composites, 34(1), pp. 37–48.
Haris, A., Tan, V.B.C., 2021, Effects of spacing and ply blocking on the ballistic resistance of UHMWPE laminates, International Journal of Impact Engineering, 151, 103824.
Tan, V.B.C., Lim, C.T., Cheong, C.H., 2003, Perforation of high-strength fabric by projectiles of different geometry, International Journal of Impact Engineering, 28(2), pp. 207–222.
Ma, Y., Dippolito, M., Miao, Y., Wang, Y., 2021. A filament-level analysis on failure mechanism and ballistic limit of real-size multi-layer 2D woven fabrics under FSP impact, Textile Research Journal, 91(23-24), pp.2896-2910.
Gu, B., 2003, Analytical modeling for the ballistic perforation of planar plain-woven fabric target by projectile, Composites Part B: Engineering, 34(4), pp. 361–371.
Pasquali, M., Terra, C., Gaudenzi, P., 2015, Analytical modelling of high-velocity impacts on thin woven fabric composite targets, Composite Structures, 131, pp. 951–965.
Naik, N.K., Doshi, A.V., 2005, Ballistic Impact Behavior of Thick Composites: Analytical Formulation, AIAA Journal, 43(7), pp. 1525–1536.
Naik, N.K., Shrirao, P., Reddy, B.C.K., 2006, Ballistic impact behaviour of woven fabric composites: Formulation, International Journal of Impact Engineering, 32(9), pp. 1521–1552.
Langston, T., 2017, An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites, Composite Structures, 179, pp. 245–257.
Shanazari, H., Liaghat, G.H., Hadavinia, H., Aboutorabi, A., 2017, Analytical investigation of high-velocity impact on hybrid unidirectional/woven composite panels, Journal of Thermoplastic Composite Materials, 30(4), pp. 545–563.
Alonso, L., Navarro, C., García-Castillo, S.K.,2018, Analytical models for the perforation of thick and thin thickness woven-laminates subjected to high-velocity impact, Composites Part B: Engineering, 143, pp. 292–300.
Bresciani, L.M., Manes, A., Giglio, M., 2015, An analytical model for ballistic impacts against plain-woven fabrics with a polymeric matrix, International Journal of Impact Engineering, 78, pp. 138–149.
Choudhury, S., Yerramalli, C.S., Guha, A., 2023, Analytical modeling of the ballistic impact performance of glass fabric - epoxy composites at low temperatures, International Journal of Impact Engineering, 176, pp. 104565.
Pirvu, C., Musteata, A.E., Ojoc, G.G., Sandu, S., Deleanu, L., 2019, A Meso Level FE Model for the Impact Bullet – Yarn, Materiale Plastice, 56(1), pp. 22–31.
Ma, P., Jin, L., Wu, L., 2019, Experimental and numerical comparisons of ballistic impact behaviors between 3D angle-interlock woven fabric and its reinforced composite, Journal of Industrial Textiles, 48(6), pp. 1044–1058.
Ul Haq, A., Kumar Reddy Narala, S., 2023, Dynamic response of honeycomb cored sandwich panels under high velocity impact: A numerical study, Materials Today Proceedings, https://doi.org/10.1016/j.matpr.2023.03.106.
Nilakantan, G., Keefe, M., Bogetti, T.A., Adkinson, R., Gillespie Jr, J.W., 2010, On the finite element analysis of woven fabric impact using multiscale modeling techniques, International Journal of Solids and Structures, 47(17), pp. 2300–2315.
Nilakantan, G., Keefe, M., Bogetti, T.A., Gillespie Jr, J.W., 2010, Multiscale modeling of the impact of textile fabrics based on hybrid element analysis, International Journal of Impact Engineering, 37(10), pp. 1056–1071.
Grujicic, M., Hariharan, A., Pandurangan, B., Yen, C.F., Cheeseman, B.A., Wang, Y., Miao, Y., Zheng, J.Q., 2012, Fiber-Level Modeling of Dynamic Strength of Kevlar® KM2 Ballistic Fabric, Journal of Materials Engineering and Performance, 21, pp. 1107–1119.
Oliveira, M.S., da Costa Garcia Filho, F., Pereira, A.C., Nunes, L.F., da Luz, F.S., de Oliveira Braga, F., Colorado, H.A., Monteiro, S.N., 2019, Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis, Journal of Materials Research and Technology, 8(6), pp. 5899-5908.
Nilakantan, G., 2013, Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies, Composite Structures, 104, pp. 1–13.
Gopinath, G., Batra, R.C., 2022, Finite element method based micromechanical methodology for homogenizing fiber/fabrics-reinforced composites and their progressive failure, Composite Structures, 286, 115279.
Zhu, W., Liu, J., Wei, X., 2021, A multiscale model for the prediction of ballistic performance of fiber-reinforced composites, International Journal of Impact Engineering, 154, 103889.
Kędzierski, P., Popławski, A., Gieleta, R., Morka, A., Sławiński, G., 2015, Experimental and numerical investigation of fabric impact behavior, Composites Part B: Engineering, 69, pp. 452–459.
Bao, J.W., Wang, Y.W., An, R., Cheng, H.W., Wang, F.C., 2022, Investigation of the mechanical and ballistic properties of hybrid carbon/ aramid woven laminates, Defence Technology, 18(10), pp. 1822–1833.
Nayak, S.Y., Sultan, M.T.H., Shenoy, S.B., Kini, C.R., Samant, R., Shah, A.U.M., Amuthakkannan, P., 2020, Potential of Natural Fibers in Composites for Ballistic Applications–A Review, Journal of Natural Fibers, 19(5), pp. 1648-1658.
Nascimento, L.F.C., Louro, L.H.L., Monteiro, S.N., Gomes, A.V., Júnior, É.P.L., Marçal, R.L.S.B., 2017, Ballistic Performance in Multilayer Armor with Epoxy Composite Reinforced with Malva Fibers, Proceedings of the 3rd Pan American materials congress, The Minerals, Metals & Materials Series. Springer-Cham., pp. 331–338.
Monteiro, S.N., Pereira, A.C., Ferreira, C.L., Pereira Júnior, É., Weber, R.P., Assis, F.S.D., 2018, Performance of Plain-Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System, Polymers (Basel), 10(3), 230.
de Assis, F.S., Pereira, A.C., da Costa Garcia Filho, F., Lima Jr, E.P., Monteiro, S.N., Weber, R.P., 2018, Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor, Journal of Materials Research and Technology, 7(4), pp.535-540.
Garcia, Filho F.D.C., Monteiro, S.N., 2019, Piassava Fiber as an Epoxy Matrix Composite Reinforcement for Ballistic Armor Applications, JOM, 71, pp. 801–808.
Pereira, A.C., de Assis, F.S., da Costa Garcia Filho, F., Oliveira, M.S., da Cruz Demosthenes, L.C., Lopera, H.A.C., Monteiro, S.N., 2019, Ballistic performance of multilayered armor with intermediate polyester composite reinforced with fique natural fabric and fibers, Journal of Materials Research and Technology, 8(5), pp.4221-4226.
Jambari, S., Yahya, M.Y., Abdullah, M.R., Jawaid, M., 2017, Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material, Fibers and Polymers, 18, pp. 563–568.
Pereira, A.C., Monteiro, S.N., de Assis, F.S., Margem, F.M., da Luz, F.S., de Oliveira Braga, F., 2017, Charpy impact tenacity of epoxy matrix composites with aligned jute fibers, Journal of Materials Research and Technology, 6(4), pp. 312–316.
Oliveira, M.S., Pereira, A.C., da Costa Garcia Filho, F., da Luz, F.S., de Oliveira Braga, F., Nascimento, L.F.C., Lima, É.P., da Cruz Demosthenes, L.C., Monteiro, S.N., 2019, Fique Fiber-Reinforced Epoxy Composite for Ballistic Armor Against 7.62 mm Ammunition, Green Materials Engineering: An EPD Symposium in Honor of Sergio Monteiro, Springer-Cham., pp. 193–199.
Neves Monteiro, S., de Oliveira Braga, F., Pereira Lima, E., Henrique Leme Louro, L., Wieslaw Drelich, J., 2017, Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor, Polymer Engineering & Science, 57(9), pp.947-954.
de Oliveira Braga, F., Bolzan, L.T., da Luz, F.S., Lopes, P.H.L.M., Lima Jr, É.P. and Monteiro, S.N., 2017, High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates, Journal of Materials Research and Technology, 6(4), pp.417-422.
Pereira, A.C., Assis, F.S.D., Garcia Filho, F.D.C., Oliveira, M.S., Lima, E.S., Lopera, H.A.C., Monteiro, S.N., 2019, Evaluation of the Projectile’s loss of Energy in Polyester Composite Reinforced with Fique Fiber and Fabric, Materials Research, 22, e20190146.
Wambua, P., Vangrimde, B., Lomov, S., Verpoest, I., 2007, The response of natural fiber composites to ballistic impact by fragment simulating projectiles, Composite Structures, 77(2), pp. 232–240.
Haro, EE., Szpunar, JA., Odeshi, AG., 2018, Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles, Defence Technology, 14(3), pp. 238–249.
Batra, R.C., Gopinath, G., Zheng, J.Q., 2012, Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates, Composite Structures, 94(2), pp. 540–547.
Pham, Q.H., Ha-Minh, C., Chu, T.L., Kanit, T., Imad, A., 2022, Numerical investigation of fibre failure mechanisms of one single Kevlar yarn under ballistic impact, International Journal of Solids and Structures, 239, 111436.
Pandya, K.S., Kumar, C.V.S., Nair, N.S., Patil, P.S., Naik, N.K., 2015, Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites, International Journal of Damage Mechanics, 24(4), pp.471-511.
da Silva, A.O., de Castro Monsores, K.G., Oliveira, S.D.S.A., Weber, R.P., Monteiro, S.N., 2018, Ballistic behavior of a hybrid composite reinforced with curaua and aramid fabric subjected to ultraviolet radiation, Journal of Materials Research and Technology, 7(4), pp.584-591.
Goda, I., Girardot, J., 2021, A computational framework for energy absorption and damage assessment of laminated composites under ballistic impact and new insights into target parameters, Aerospace Science and Technology, 115, 106835.
Bouvet, C., Hongkarnjanakul, N., Rivallant, S., Barrau, J.J., 2013. Discrete impact modeling of inter-and intra-laminar failure in composites, In: Abrate, S., Castanié, B., Rajapakse, Y. (eds), Dynamic failure of composite and sandwich structures, Springer, Dordrecht, 192, pp. 339-392.
Tiwari, G., Khaire, N., 2022, Ballistic performance and energy dissipation characteristics of cylindrical honeycomb sandwich structure, International Journal of Impact Engineering, 160, 104065.
Wu, W., 2023, Tensile Failure Behaviors and Theories of Carbon/Glass Hybrid Interlayer and Intralayer Composites, Coatings, 13(4), 774.
Li, Y., Fan, H., Gao, X.L., 2022, Ballistic helmets:Recent advances in materials, protection mechanisms, performance, and head injury mitigation, Composites Part B: Engineering, 238, 109890.
Bogetti, T.A., Walter, M., Staniszewski, J., Cline, J., 2017, Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates, Composites Part A: Applied Science and Manufacturing, 98, pp. 105–115.
Xiang, Y., Zhang, Z., Yang, X., Lin, Y., Zhang, G., Sun, M., Yan, F., Wang, M., 2022, Failure mechanism of carbon/ultra-high molecular weight polyethylene twill fiber reinforced hybrid laminates under ballistic impact, Materials & Design, 216, pp. 110578.
Nitin, MS., Suresh Kumar, S., 2022, Ballistic performance of synergistically toughened Kevlar/epoxy composite targets reinforced with multiwalled carbon nanotubes/graphene nanofillers, Polymer Composites, 43(2), pp.782-797.
DOI: https://doi.org/10.22190/FUME240216037D
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4