METAHEURISTIC-BASED TUNING OF PROPORTIONAL-DERIVATIVE LEARNING RULES FOR PROPORTIONAL-INTEGRAL FUZZY CONTROLLERS IN TOWER CRANE SYSTEM PAYLOAD POSITION CONTROL
Abstract
Keywords
Full Text:
PDFReferences
Bristow, D.A., Tharayil, M., Alleyne, A.G., 2006, A survey of iterative learning control, IEEE Control Systems Magazine, 26(3), pp. 96-114.
Owens, D.H., Hätönen, J., 2005, Iterative learning control - An optimization paradigm, Annual Reviews in Control, 29(1), pp. 57-70.
Hamidaoui, M., Shao, C., Haouassi, S., 2020, A PD-type iterative learning control algorithm for one-dimension linear wave equation, International Journal of Control, Automation Systems, 18(4), pp. 1045-1052.
Yuan, H., Zhao, X.-M., 2022, Advanced contouring compensation approach via Newton-ILC and adaptive jerk control for biaxial motion system, IEEE Transactions on Industrial Electronics, 69(5), pp. 5081-5090.
Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2024, Supplementary appendix of the paper Metaheuristic-based Tuning of Proportional-Derivative Learning Rules for Proportional-Integral Fuzzy Controllers in Tower Crane System Payload Position Control, [Online]. Available at:
https://www.aut.upt.ro/~rprecup/Supplementary_Appendix_FUME_2024.pdf (last access: 13.09.2024).
Meng, D.-Y., Zhang, J.-Y., 2022, Design and analysis of data-driven learning control: an optimization-based approach, IEEE Transactions on Neural Networks and Learning Systems, 33(10), pp. 5527-5541.
Chi, R.-H., Hui, Y., Hou, Z.-S., 2022, Data-Driven Iterative Learning Control for Discrete-Time Systems, Springer, Singapore.
Li, M., Xiong, J.-X., Cheng, R., Zhu, Y., Yang, K.-M., Sun, F.-M., 2023, Rational feedforward tuning using variance-optimal instrumental variables method based on dual-loop iterative learning control, IEEE Transactions on Industrial Informatics, 19(3), pp. 2585-2595.
Huang, T., Kang, Y.-T., Pi, Y.-J., Li, M., 2024, Combined unfixed-structure and fixed-structure data-driven feedforward control approach for ball screw feed-drive system, IEEE Transactions on Industrial Informatics, 20(2), pp. 2331-2341.
Wu, A.-J., Huo, X., Liu, Q.-Q., Ma, J., 2024, Circularly orthogonal projection-based iterative learning control for rejecting spatially cyclic disturbances, IEEE Transactions on Industrial Electronics, 71(7), pp. 7631-7640.
Wang, C., Chen, W.-H., Zhang, H.-L., Dou, W., Chen, J.-B., 2024, An immune optimization deep reinforcement learning control method used for magnetorheological elastomer vibration absorber, Engineering Applications of Artificial Intelligence, 137, paper 109108.
Wang, Y.-Q., Gao, F.-R., Doyle III, F.J., 2009, Survey on iterative learning control, repetitive control, and run-to-run control, Journal of Process Control, 19(10), pp. 1589–1600.
Precup, R.-E., Preitl, S., Rudas, I.J., Tar, J.K., 2006, On the use of iterative learning control in fuzzy control system structures, Proc. 7th International Symposium on Hungarian Researchers on Computational Intelligence, Budapest, Hungary, pp. 69-82.
Precup, R.-E., Preitl, S., Tar, J.K., Tomescu, M.L., Takács, M., Korondi, P., Baranyi, P., 2008, Fuzzy control system performance enhancement by iterative learning control, IEEE Transactions on Industrial Electronics, 55(9), pp. 3461-3475.
Yu, Q.-X., Hou, Z.-S., 2021, Adaptive fuzzy iterative learning control for high-speed trains with both randomly varying operation lengths and system constraints, IEEE Transactions on Fuzzy Systems, 29(8), pp. 2408-2418.
Liu, J.-N., Sun, W.-C., 2022, A positioning method of permanent magnet synchronous linear motor based on fuzzy iterative learning control, Proc. 2022 China Automation Congress, Xiamen, China, pp. 1-6.
Liang, M.-D., Li, J.-M., 2023, Iterative learning consensus for nonstrict feedback multiagent systems with unknown control direction and saturation input, IEEE Systems Journal, 17(3), pp. 4234-4244.
Chen, J.-X., Xie, J., Li, J.-M., Chen, W.-S., 2024, Human-in-the-loop fuzzy iterative learning control of consensus for unknown mixed-order nonlinear multi-agent systems, IEEE Transactions on Fuzzy Systems, 32(1), pp. 255-265.
Hui, Y., Meng, D.-Y., Chi, R.-H., Cai, K.-Q., 2024, Sampled-data adaptive iterative learning control for uncertain nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(8), pp. 4568-5478.
Precup, R.-E., Hedrea, E.-L., Roman, R.-C., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2022, GWO-based performance improvement of PD-type iterative learning fuzzy control of tower crane systems, Proc. 2022 IEEE 31st International Symposium on Industrial Electronics, Anchorage, AK, USA, pp. 1041-1046.
Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Bojan-Dragos, C.-A., Damian, M.-M., Nedelcea, M.-L., 2022, Performance improvement of low-cost iterative learning-based fuzzy control systems for tower crane systems, International Journal of Computers Communications & Control, 17(1), paper 4623.
Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2023, Slime mold algorithm-based performance improvement of PD-type indirect iterative learning fuzzy control of tower crane systems, Proc. 57th Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, pp. 1-6.
Yu, S.-J., Wu, J.-H., Yan, X.-W., 2022, A PD-type open-closed-loop iterative learning control and its convergence for discrete systems, Proc. First International Conference on Machine Learning and Cybernetics, Beijing, China, pp. 659-662.
Kennedy, J., Eberhart, R.C., 1995, Particle swarm optimization, Proc. 1995 IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942-1948.
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., 2009, GSA: a gravitational search algorithm, Information Sciences, 179(13), pp. 2232-2248.
Kaveh, A., Talatahari, S., 2010, A novel heuristic optimization method: charged system search, Acta Mechanica, 213, pp. 267-289.
Mirjalili, S., Lewis, A., 2016, The whale optimization algorithm, Advances in Engineering Software, 95, pp. 51-67.
Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S., 2021, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Computers and Industrial Engineering, 158, paper 107408.
Preitl, S., Precup, R.-E., 1996, On the algorithmic design of a class of control systems based on providing the symmetry of open-loop Bode plots, Scientific Bulletin of UPT, Transactions on Automatic Control and Computer Science, 41(2), pp. 47-55.
Preitl, S., Precup, R.-E., 1999, An extension of tuning relations after symmetrical optimum method for PI and PID controllers, Automatica, 35(10), pp. 1731-1736.
Galichet, S., Foulloy, L., 1995, Fuzzy controllers: Synthesis and equivalences, IEEE Transactions on Fuzzy Systems, 3(2), pp. 140-148.
Precup, R.-E., David, R.-C., 2019, Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems, Butterworth-Heinemann, Elsevier, Oxford, UK.
Precup, R.-E., Radac, M.-B., Tomescu, M.L., Petriu, E.M., Preitl, S., 2013, Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems, Expert Systems with Applications, 40(1), pp. 188-199.
Song, J., Chen, Y., Liu, Y., Zhang, L., 2023, Fixed-time fuzzy adaptive fault-tolerant control for strict-feedback nonlinear systems with input delay, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(11), pp. 6999-7010.
Inteco, 2012, Tower Crane, User’s Manual, Inteco Ltd., Krakow, Poland.
Precup, R.-E., Roman, R.-C., Safaei, A., 2021, Data-Driven Model-Free Controllers, 1st Edition, CRC Press, Taylor & Francis, Boca Raton, FL, USA.
Roman, R.-C., Precup, R.-E., Petriu, E.M., 2021, Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems, European Journal of Control, 58, pp. 373-387.
Vázquez, C., Collado, J., Friedman, L., 2013, Control of a parametrically excited crane: a vector Lyapunov approach, IEEE Transactions on Control Systems Technology, 21(6), pp. 2332-2340.
David, R.-C., Precup, R.-E., Preitl, S., Szedlak-Stinean, A.-I., Roman, R.-C., Petriu, E.M., 2020, Design of low-cost fuzzy controllers with reduced parametric sensitivity based on whale optimization algorithm, Proc. 2020 IEEE International Conference on Fuzzy Systems, Glasgow, UK, pp. 1-6.
Precup, R.-E., Hedrea, E.-L., Roman, R.-C., Petriu, E. M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., Paulescu, F.-C., 2022, AVOA-based tuning of low-cost fuzzy controllers for tower crane systems, Proc. 2022 IEEE International Conference on Fuzzy Systems, Padova, Italy, pp. 1-8.
Precup, R.-E., David, R.-C., Roman, R.-C., Szedlak-Stinean, A.-I., Petriu, E.M., 2023, Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm, International Journal of Systems Science, 54(15), pp. 2941-2956.
Precup, R.-E., Roman, R.-C., Hedrea, E.-L., Petriu, E.M., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., 2024, Data obtained by 30 independent runs of all algorithms, [Online]. Available at: http://www.aut.upt.ro/~rprecup/Data_FUME_2.m (last access: 01.06.2024).
Milić, P., Marinković, D., Klinge, S., Ćojbašić, Ž., 2023, Reissner-Mindlin based isogeometric finite element formulation for piezoelectric active laminated shells, Tehnički Vjesnik, 30(2), pp. 416-425.
Nestorović T., Marinković D., Shabadi S., Trajkov M., 2014, User defined finite element for modeling and analysis of active piezoelectric shell structures, Meccanica, 49(8), pp. 1763-1774.
Bejinariu, S.I., Costin, H., Rotaru, F., Niţă, C., Luca, R., Lazăr, C., 2014, Parallel processing and bio-inspired computing for biomedical image registration, Computer Science Journal of Moldova, 22(2), pp. 253-277.
Chen, B., Peng, W.-M., Song, J.-H., 2023, A frequent construction mining scheme based on syntax tree, Romanian Journal of Information Science and Technology, 26(1), pp. 3-20.
Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., 2023, Infinite spike trains in spiking neural P systems, Romanian Journal of Information Science and Technology, 26(3-4), pp. 251-275.
Ćojbašić, Ž.M., Nikolić, V.D., Ćirić, I.T., Ćojbašić, L.R., 2011, Computationally intelligent modeling and control of fluidized bed combustion process, Thermal Science, 15(2), pp. 321-338.
Filip, F.G., 2021, Automation and computers and their contribution to human well-being and resilience, Studies in Informatics and Control, 30(4), pp. 5-18.
Vrcan, Ž., Troha, S., Marković, K., Marinković, D., 2024, Analysis of complex planetary gearboxes, Spectrum of Mechanical Engineering and Operational Research, 1(1), pp. 227-249.
Romero, S.V., Osaba, E., Villar-Rodriguez, E., Oregi, I., Ban, Y., 2023, Hybrid approach for solving real-world bin packing problem instances using quantum annealers, Scientific Reports, 13(1), paper 11777.
Precup, R.-E., Haidegger, T., Preitl, S., Benyo, B., Paul, A.S., Kovacs, L., 2012, Fuzzy control solution for telesurgical applications, Applied and Computational Mathematics, 11(3), pp. 378-397.
Boucetta, S.I., Johanyák, Z.C., Pokorádi, L.K., 2017, Survey on software defined VANETs, Gradus, 4(1), pp. 272-283.
Škrjanc, I., Blažič, S., Angelov, P., 2014, Robust evolving cloud-based PID control adjusted by gradient learning method, Proc. 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, pp. 1-6.
Vaščák, J., Hvizdoš, J., Puheim, M., 2016, Agent-based cloud computing systems for traffic management, Proc. 2016 International Conference on Intelligent Networking and Collaborative Systems, Ostrava, Czech Republic, pp. 73-79.
Pozna, C., Precup, R.-E., 2012, Aspects concerning the observation process modelling in the framework of cognition processes, Acta Polytechnica Hungarica, 9(1), pp. 203-223.
Ando, N., Szemes, T., Korondi, P., Hashimoto, H., 2002, Friction compensation for 6DOF Cartesian coordinate haptic interface, Proc. 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 2893-2898.
DOI: https://doi.org/10.22190/FUME240914044P
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4