SURFACE ENERGY CHARACTERIZATION OF A SINGLE MICROSPHERE PARTICLE USING PEAKFORCE QUANTITATIVE NANOMECHANICAL MAPPING MODE OF ATOMIC FORCE MICROSCOPE
Abstract
Keywords
Full Text:
PDFReferences
Rogers, J. A., Someya, T., Huang, Y., 2010, Materials and mechanics for stretchable electronics, Science, 327(5973), pp. 1603-1607.
Harris, K. D., Elias, A. L., Chung, H.-J., 2016, Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies, Journal of Materials Science, 51, pp. 2771-2805.
Almuslem, A. S., Shaikh, S. F., Hussain, M. M., 2019, Flexible and stretchable electronics for harsh‐environmental applications, Advanced Materials Technologies, 4(9), 1900145.
Wang, D., Ren, S., Chen, J., Li, Y., Wang, Z., Xu, J., Jia, X., Fu, J., 2022, Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities, Chemical Engineering Journal, 430, 133163.
Choi, C., Qaiser, N., Hwang, B., 2024, Mechanically pressed polymer-matrix composites with 3d structured filler networks for electromagnetic interference shielding application, Facta Universitatis-Series Mechanical Engineering, 22, pp. 601-614.
Memarzadeh, A., Onyibo, E. C., Asmael, M., Safaei, B., 2024, Dynamic effect of ply angle and fiber orientation on composite plates, Spectrum of Mechanical Engineering and Operational Research, 1(1), pp. 90-110.
Kim, H., Kim, G., Kang, J. H., Oh, M. J., Qaiser, N., Hwang, B., 2025, Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption, Advanced Composites and Hybrid Materials, 8(1), pp. 1-14.
Lavagna, L., Nisticò, R., Musso, S., Pavese, M., 2021, Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: A review, Materials today chemistry, 20, 100477.
Hong, S., Qaiser, N., Ha, H., Hwang, B., 2024, Enhanced stretchability of porous PDMS/CIP composites via weak interfacial bonding and their electromagnetic noise suppression properties, Applied Surface Science, 664, 160200.
Yun, G., Tang, S.-Y., Lu, H., Zhang, S., Dickey, M. D., Li, W., 2021, Hybrid‐filler stretchable conductive composites: from fabrication to application, Small Science, 1(6), 2000080.
He, X., Shi, J., Hao, Y., Wang, L., Qin, X., Yu, J., 2021, PEDOT: PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors, Composites Communications, 27, 100822.
Das, P., Katheria, A., Jana, A., Das, M., Roy, B., Nayak, J., Nath, K., Ghosh, S. K., De, A., Das, N. C., 2023, Super-stretchable, self-healing 2D MXene-based composites for thermal management and electromagnetic shielding applications, ACS Applied Engineering Materials, 1(4), pp. 1186-1200.
Olonisakin, K., Fan, M., Xin-Xiang, Z., Ran, L., Lin, W., Zhang, W., Wenbin, Y., 2022, Key improvements in interfacial adhesion and dispersion of fibers/fillers in polymer matrix composites; focus on pla matrix composites, Composite Interfaces, 29(10), pp. 1071-1120.
Díez-Pascual, A. M., 2022, PMMA-based nanocomposites for odontology applications: a state-of-the-art, International Journal of Molecular Sciences, 23(18), 10288.
Marino, F., Pawlik, M., Valvano, S., 2024, Mechanical Analysis of Sandwich Plates with Lattice Metal Composite Cores, Spectrum of Mechanical Engineering and Operational Research, 1(1), pp. 44-63.
Kashfipour, M. A., Mehra, N., Zhu, J., 2018, A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites, Advanced Composites and Hybrid Materials, 1, pp. 415-439.
Zhang, S., Wang, X., Yang, J., Chen, H., Jiang, X., 2023, Micromechanical interlocking structure at the filler/resin interface for dental composites: a review, International Journal of Oral Science, 15(1), 21.
Balazs, A. C., Emrick, T., Russell, T. P., 2006, Nanoparticle polymer composites: where two small worlds meet, Science, 314(5802), pp. 1107-1110.
Deng, H., Lin, L., Ji, M., Zhang, S., Yang, M., Fu, Q., 2014, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Progress in Polymer Science, 39(4), pp. 627-655.
Zhang, X., Li, B. W., Dong, L., Liu, H., Chen, W., Shen, Y., Nan, C. W., 2018, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces, Advanced Materials Interfaces, 5(11), 1800096.
Stöckelhuber, K. W., Das, A., Jurk, R., Heinrich, G., 2010, Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber, Polymer, 51(9), pp. 1954-1963.
Bayat, A., Ebrahimi, M., Ardekani, S. R., Iranizad, E. S., Moshfegh, A. Z., 2021, Extended Gibbs free energy and laplace pressure of ordered hexagonal close-packed spherical particles: A wettability study, Langmuir, 37(28), pp. 8382-8392.
Harikrishnan, A., Das, S. K., Agnihotri, P. K., Dhar, P., 2017, Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids, Journal of Applied Physics, 122(5). 54301
Alghunaim, A., Kirdponpattara, S., Newby, B.-m. Z., 2016, Techniques for determining contact angle and wettability of powders, Powder Technology, 287, pp. 201-215.
Kozbial, A., Li, Z., Conaway, C., McGinley, R., Dhingra, S., Vahdat, V., Zhou, F., D’Urso, B., Liu, H., Li, L., 2014, Study on the surface energy of graphene by contact angle measurements, Langmuir, 30(28), pp. 8598-8606.
Susana, L., Campaci, F., Santomaso, A. C., 2012, Wettability of mineral and metallic powders: applicability and limitations of sessile drop method and Washburn's technique, Powder Technology, 226, pp. 68-77.
Kadyrov, R., Mukhamatdinov, I., Statsenko, E., 2023, Determination of Sessile Drop Wetting Angle Based on μCT without the Direct Angle Measurement, Langmuir, 39(8), pp. 2966-2973.
Wang, Z., Chu, Y., Zhao, G., Yin, Z., Kuang, T., Yan, F., Zhang, L., Zhang, L., 2023, Study of surface wettability of mineral rock particles by an improved Washburn method, ACS omega, 8(17), pp. 15721-15729.
Galet, L., Patry, S., Dodds, J., 2010, Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique, Journal of Colloid and Interface Science, 346(2), pp. 470-475.
Adamcik, J., Lara, C., Usov, I., Jeong, J. S., Ruggeri, F. S., Dietler, G., Lashuel, H. A., Hamley, I. W., Mezzenga, R., 2012, Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method, Nanoscale, 4(15), pp. 4426-4429.
Ha, H., Müller, S., Baumann, R.-P., Hwang, B., 2024, Peakforce quantitative nanomechanical mapping for surface energy characterization on the nanoscale: A mini-review, Facta Universitatis-Series Mechanical Engineering, 22, pp. 1-12.
Park, W., Müller, S., Baumann, R.-P., Becker, S., Hwang, B., 2020, Surface energy characterization of nanoscale metal using quantitative nanomechanical characterization of atomic force microscopy, Applied Surface Science, 507, 145041.
Ha, H., Ko, S., Goh, B., Müller, S., Baumann, R.-P., Leem, M., Jo Yoo, S., Choi, J., Hwang, B., 2022, Influence of Grain Boundary Density on the Surface Energy of Nanocrystalline Metal Thin Films, Applied Surface Science, 604, 154463.
Małecki, P., Kolman, K., Pigłowski, J., Kaleta, J., Krzak, J., 2015, Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement, Journal of Solid State Chemistry, 226, pp. 224-230.
Cvek, M., Moucka, R., Sedlacik, M., Pavlinek, V., 2017, Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane–modified carbonyl iron particles with enhanced wettability, Smart Materials and Structures, 26(10), 105003.
DOI: https://doi.org/10.22190/FUME250114012H
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4