ADHESION EFFECTS WITHIN THE HARD MATTER – SOFT MATTER INTERFACE: MOLECULAR DYNAMICS
Abstract
Keywords
Full Text:
PDFReferences
Li, C., Strachan, A., 2011, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA, Polymer, 52(13), pp. 2920-2928.
Shamardina, O., Kulikovsky, A.A., Chertovich, A.V., Khokhlov, A.R., 2012, A Model for High-Temperature PEM Fuel Cell: The Role of Transport in the Cathode Catalyst Layer, Fuel Cells, 12(4), pp. 577-582.
Komarov, P.V., Khalatur, P.G., Khokhlov, A.R., 2013, Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport, Beilstein journal of nanotechnology, 4(1), pp. 567-587.
Chughtai, A.H., Ahmad, N., Younus, H.A., Laypkov, A., Verpoort, F., 2015, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations, Chemical Society Reviews, 44(19), pp. 6804-6849.
de Clippel, F., Dusselier, M., Van de Vyver, S., Peng, L., Jacobs, P.A., Sels, B.F., 2013, Tailoring nanohybrids and nanocomposites for catalytic applications, Green Chemistry, 15(6), pp. 1398-1430.
Zeng, X., Li, S., 2012, A three dimensional soft matter cell model for mechanotransduction, Soft Matter, 8(21), pp. 5765-5776.
Poon, W.C., Andelman, D. (eds.)., 2006, Soft condensed matter physics in molecular and cell biology, CRC Press.
Cranford, S.W., Buehler, M.J., 2012, Biomateriomics, Vol. 165, Springer Science Business Media.
Li, L., Gu, W., Chen, J., Chen, W., Xu, Z.P., 2014, Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles, Biomaterials, 35(10), pp. 3331-3339.
Jain, S., Datta, M., 2014, Montmorillonite-PLGA nanocomposites as an oral extended drug delivery vehicle for venlafaxine hydrochloride, Applied Clay Science, 99, pp. 42-47.
Hu, H., Xiu, K.M., Xu, S.L., Yang, W.T., Xu, F.J., 2013, Functionalized layered double hydroxide nanoparticles conjugated with disulfide-linked polycation brushes for advanced gene delivery, Bioconjugate chemistry, 24(6), pp. 968-978.
Li, D., Zhang, Y.T., Yu, M., Guo, J., Chaudhary, D., Wang, C.C., 2013, Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles, Biomaterials, 34(32), pp. 7913-7922.
Jakubikova, B., Kovanda, F., 2010, Utilization of layered double hydroxides in medical applications, Chem. List, 104, pp. 906-912.
Lozhkomoev, A.S., Kazantsev, S.O., Lerner, M.I., Psakhie, S.G., 2016, Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions, Nanotechnologies in Russia, 11(7-8), pp. 506-511.
MacKerell, A.D., Jr., et al, 1998, All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B, 102, pp. 3586-3616.
Berendsen, H.J.C., van der Spoel, D., van Drunen, R., 1995, GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation, Comp. Phys. Comm., 91, pp. 43-56.
Pearlman, D.A., et al, 1995, AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules, Comp. Phys. Comm., 91, pp. 1-41.
Mayo, S.L., Olafson, B.D., Goddard, W.A., 1990, DREIDING: A Generic Force Field for Molecular Simulations, J. Phys. Chem., 94, pp. 8897-8909.
Daw, M.S., Baskes, M.I., 1986, Semiemperical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett., 50, pp. 1285-1288.
Foiles, S.M., Baskes, M.I., Daw, M.S., 1986, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33, pp. 7983-7991.
Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M., 2003, Development of new interatomic potentials appropriate for crystalline and liquid iron, Phil. Mag., 83, pp. 3977-3994.
Belashchenko, D.K., 2006, Application of the Embedded Atom Model to Liquid Metals: Liquid Mercury, High Temperature, 44, pp. 675-686.
Cygan, R.T., Liang, J.-J., Kalinichev, A.G., 2004, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, 108, pp. 1255-1266.
Stuart S.J., Tutein A.B., Harrison J.A., 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 14, pp. 6472.
Tersoff J., 1988, Empirical Interatomic Potential for Carbon, With Application to Amorphous Carbon, Phys. Rev. Lett., 61, pp. 2879-2882.
Prodanov N.V., Khomenko A.V., 2010, Computational investigation of the temperature influence on the cleavage of a graphite surface, Surface Science, 604, 7-8, pp. 730–740.
Heinz, H., Lin, T.J., Kishore Mishra, R., Emami, F.S., 2013, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field, Langmuir, 29(6), pp. 1754-1765.
Hockney, R.W., Goel, S.P., Eastwood, J.W., 1973, A 10000 particle molecular dynamics model with long range forces, Chemical Physics Letters, 21(3), pp. 589-591.
Hockney, R.W., Eastwood, J.W., 1988, Computer simulation using particles, CRC Press.
Ewald, P.P., 1921, Ewald summation, Ann. Phys, 369, pp. 253.
de Leeuw, S.W., Perram, J.W., Smith, E.R., 1980, Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 373, 1752, pp. 27-56.
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79(2), pp. 926-935.
Tsukanov, A.A., Psakhie, S.G., 2016, Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study, Scientific reports, 6, pp. 19986.
Tsukanov, A.A., Psakhie, S.G., 2016, Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel, In Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC’16), AIP Publishing, 1760, 1, pp. 020066.
Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., ..., Schulten, K., 1999, Steered molecular dynamics, In Computational molecular dynamics: challenges, methods, ideas. Springer Berlin Heidelberg, pp. 39-65.
Arakcheeva, A.V., Pushcharovskii, D.Yu., Atencio, D., Lubman, G.U., 1996, Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3) 3H2O, a new mineral from the hydrotalcite-manasseite group, Crystallography Reports, 41, pp. 972-981.
Noel, Y., Demichelis, R., Pascale, F., Ugliengo, P., Orlando, R., Dovesi, R., 2009, Ab initio quantum mechanical study of γ-AlOOH boehmite: structure and vibrational spectrum, Physics and Chemistry of Minerals, 36(1), pp. 47-59.
Zoete, V., Cuendet, M.A., Grosdidier, A. Michielin, O., 2011, SwissParam, a fast force field generation tool for small organic molecules, J. Comput. Chem. 32, pp. 2359–2368.
Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J., ... De Jong, W.A., 2010, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Computer Physics Communications, 181(9), pp. 1477-1489.
Krishnan, R., Binkley, J.S., Seeger, R. Pople, J.A., 1980, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72, pp. 650–655.
Hariharan P.C., Pople, J.A., 1973, Influence of Polarization Functions on MO Hydrogenation Energies, Theor. Chim. Acta, 28, pp. 213–222.
Plimpton, S., 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117, pp. 1–19.
Sadovnichy, V., Tikhonravov, A., Voevodin, Vl. Opanasenko, V., 2013, “Lomonosov”: Supercomputing at Moscow State University, In Contemporary High Performance Computing: From Petascale toward Exascale (Chapman Hall/CRC Computational Science), Boca Raton, USA, CRC Press, pp. 283–307.
Humphrey, W., Dalke, A. Schulten, K., 1996, VMD - visual molecular dynamics, J. Molec. Graphics 14, pp. 33–38.
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., 2012, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of cheminformatics, 4(1), pp. 1.
DOI: https://doi.org/10.22190/FUME1603269T
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4