SIMULATION OF FRACTURE USING A MESH-DEPENDENT FRACTURE CRITERION IN THE DISCRETE ELEMENT METHOD

Andrey Dimaki, Evgeny Shilko, Sergey Psakhie, Valentin Popov

DOI Number
10.22190/FUME171229010D
First page
41
Last page
50

Abstract


Recently, Pohrt and Popov have shown that for simulation of adhesive contacts a mesh dependent detachment criterion must be used to obtain the mesh-independent macroscopic behavior of the system. The same principle should be also applicable for the simulation of fracture processes in any method using finite discretization. In particular, in the Discrete Element Methods (DEM) the detachment criterion of particles should depend on the particle size. In the present paper, we analyze how the mesh dependent detachment criterion has to be introduced to guarantee the macroscopic invariance of mechanical behavior of a material. We find that it is possible to formulate the criterion which describes fracture both in tensile and shear experiments correctly.

Keywords

Fracture, Mesh-Dependence, Discrete Element Method, Particle Size

Full Text:

PDF

References


Hertz, H., 1881, Über die Berührung fester elastischer Körper, Journal fuer die reine und angewandte Mathematik, 92, pp. 156-171.

Johnson, K.L., 1987, Contact Mechanics, Cambridge University Press, 452 p.

Shtaerman, I.Ya., The Contact Problem of the Theory of Elasticity, Moscow-Leningrad, 271 p. (in Russian).

Rao, A.K., 1971, Stress concentrations and singularities at interface corners, ZAMM, 51, pp. 395-406.

Okubo, H., 1951, On the two-dimensional problem of a semi-infinite elastic body compressed by an elastic plane, The Quarterly Journal of Mechanics and Applied Mathematics, 4(3), pp. 260-270.

Jordan, E.H., Urban, M.R., 1999, An approximate analytical expression for elastic stresses in flat punch problems, Wear, 236(1-2), pp. 134-143.

Bazant, Z., 2005, Scaling of Structural Strength: 2nd Ed., Butterworth-Heinemann, 336 p.

He, Z., Kotousov, A., Berto, F., Branco, R., 2016, A Brief Review of Recent Three-Dimensional Studies of Brittle Fracture, Physical Mesomechanics, 19(1), pp. 6–20.

Novozhilov, V.V., 1969, On a necessary and sufficient criterion for brittle strength, Journal of Applied Mathematics and Mechanics, 33(2), pp. 212-222.

Whitney, J.M., Nuismer, R.J., 1974, Stress fracture criteria for laminated composites containing stress concentrators, Journal of Composite Materials, 8(3), pp. 253-265.

Seweryn, A., 1994, Brittle fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, 47(5), pp. 673–681.

Suknev, S.V., 2008, Formation of tensile fractures in the stress concentration zone in gypsum, Journal of Mining Science, 44(1), pp. 43-50.

Bobinski, J., Tejchman, J., 2005, Modelling of Concrete Behaviour with a Non-Local Continuum Damage Approach, Archives of Hydro-Engineering and Environmental Mechanics, 52(3), pp. 243-263.

Tovo, R., Livieri, P., Benvenuti, E., 2006, An implicit gradient type of static failure criterion for mixed mode loading, International Journal of Fracture, 141(3-4), pp. 497-511.

Pohrt, R., Popov, V.L., 2015, Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method, Facta Universitatis-Series Mechanical Engineering, 13(1), pp. 3-10.

Li, Q., Popov, V.L., 2017, Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials, Computational Mechanics, doi: 10.1007/s00466-017-1461-9.

Popov, V.L., Pohrt, R., Li, Q., 2017, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 5(3), pp. 308–325.

Tavarez, F.A., M.E. Plesha, M.E., 2007, Discrete element method for modelling solid and particulate materials, International Journal for Numerical Methods in Engineering, 70(4), pp. 379-404.

Psakhie, S.G., Shilko, E.V., Grigoriev, A.S., Astafurov, S.V., Dimaki, A.V., Smolin, A.Y., 2014, A mathematical model of particle–particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic–plastic materials, Engineering Fracture Mechanics, 130, pp. 96-115.

Psakhie, S.G., Dimaki, A.V., Shilko, E.V., Astafurov, S.V., 2016, A coupled discrete element-finite difference approach for modeling mechanical response of fluid-saturated porous materials, International Journal for Numerical Methods in Engineering, 106(8), pp. 623-643.

Shilko, E.V., Psakhie, S.G., Schmauder, S., Popov, V.L., Astafurov, S.V., Smolin, A.Yu., 2015, Overcoming the limitations of distinct element method for multiscale modelling of materials with multimodal internal structure, Computational Materials Science, 102, pp. 267-285.

Paterson, M.S., Wong, T.-F., 2005, Experimental rock deformation – the brittle field, Springer-Verlag, Berlin Heidelberg, Germany, 348 p.

Popov, V.L., Heß, M., Willert, E., 2018, Handbuch der Kontaktmechanik: Exakte Lösungen axialsymme-trischer Kontaktprobleme, Springer Vieweg, 339 p.




DOI: https://doi.org/10.22190/FUME171229010D

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4