ADHESIVE FORCE OF FLAT INDENTERS WITH BRUSH-STRUCTURE
Abstract
Keywords
Full Text:
PDFReferences
Checco, A., Rahman, A., Black, C.T., 2014, Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self-assembly, Adv. Mater., 26(6), pp. 886–891.
Jaggessar, A., Shahali, H., Mathew, A., Yarlagadda, P.K.D.V., 2017, Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants, J. Nanobiotechnology, 15, pp. 1–20.
D. Gropper, D., Wang, L., Harvey, T.J., 2016, Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings, Tribol. Int., 94, pp. 509–529.
Autumn, K., 2002, Mechanisms of Adhesion in Geckos, Integr. Comp. Biol., 42(6), pp. 1081–1090.
Arzt, E., Gorb, S., Spolenak, R., 2003, From micro to nano contacts in biological attachment devices, Proc. Natl. Acad. Sci., 100(19), pp. 10603–10606.
Kamperman, M., Kroner, E., del Campo, A., McMeeking, R.M., Arzt, E., 2010, Functional adhesive surfaces with “gecko” effect: The concept of contact splitting, Adv. Eng. Mater., 12, pp. 335–348.
Popov, V.L., 2017, Contact Mechanics and Friction, 2nd Edition, Springer Verlag.
Kendall, K., 1971, The adhesion and surface energy of elastic solids, J. Phys. D: Appl. Phys., 4, pp. 1186–1195.
Guidoni, G.M., Schillo, D., Hangen, U., Castellanos, G., Arzt, E., McMeeking, R.M., Bennewitz, R., 2010, Discrete contact mechanics of a fibrillar surface with backing layer interactions, J. Mech. Phys. Solids., 58, pp. 1571–1581.
Argatov, I.I., 2011, Electrical contact resistance, thermal contact conductance and elastic incremental stiffness for a cluster of microcontacts: Asymptotic modelling, Quart. J. Mech. Appl. Math., 64, pp. 1–24.
Bacca, M., Booth, J.A., Turner, K.L., McMeeking, R.M., 2016, Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment, J. Mech. Phys. Solids, 96, pp. 428–444.
Argatov, I.I., Li, Q., Popov, V.L., 2018, Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives, submitted.
Pohrt, R., Popov, V.L., 2015, Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method, Facta Univ. Ser. Mech. Eng., 13(1), pp. 3–10.
Bazrafshan, M., de Rooij, M.B., Valefi, M., Schipper, D.J., 2017, Numerical method for the adhesive normal contact analysis based on a Dugdale approximation, Tribol. Int., 112, pp. 117–128.
Rey, V., Anciaux, G., Molinari, J.F., 2017, Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution, Comput. Mech., 60, pp. 69–81.
Johnson, K.L., Kendall, K., Roberts, A.D., 1971, Surface energy and the contact of elastic solids, Proc. R. Soc. A, 324, pp. 301–313.
Argatov, I.I., Li, Q., Pohrt, R., Popov, V.L., 2016, Johnson-Kendall-Roberts adhesive contact for a toroidal indenter, Proc. R. Soc. London A Math. Phys. Eng. Sci., 472.
Li, Q., Argatov, I.I., Popov, V.L., 2018, Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with noncircular shape: Analytic estimations and comparison with numeric analysis, Journal of Physics D: Applied Physics, 51(14), 145601.
Li, Q., Popov, V.L., 2017, Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials, Comput. Mech.
Heß, M., 2016, A simple method for solving adhesive and non-adhesive axisymmetric contact problems of elastically graded materials, Int. J. Eng. Sci., 104, pp. 20–33.
Popov, V.L., Pohrt, R., Li, Q., 2017, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 5, pp. 308–325.
Heepe, L., Gorb, S.N., 2014, Biologically Inspired Mushroom-Shaped Adhesive Microstructures, Annu. Rev. Mater. Res., 44, pp. 173–203.
DOI: https://doi.org/10.22190/FUME171220005L
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4