MICROSTRUCTURE-BASED SIMULATIONS OF QUASISTATIC DEFORMATION USING AN EXPLICIT DYNAMIC APPROACH
Abstract
Keywords
Full Text:
PDFReferences
Harewood, F.J., McHugh, P.E., 2007, Comparison of the implicit and explicit finite element methods using crystal plasticity, Computational Materials Science, 39(2), pp. 481-494.
Kutt, L.M., Pifko, F.B., Nardiello, J.A., Papazian, J.M., 1998, Slow-dynamic finite element simulation of manufacturing processes, Computers and Structures, 66(1), pp. 1-17.
Hu, X., Wagoner, R.H., Daehn, G.S., Ghosh, S., 1994, Comparison of explicit and implicit finite element methods in the quasistatic simulation of uniaxial tension, Communications in Numerical Methods in Engineering, 10(12), pp. 993-1003.
Dimaki, A.V., Shilko, E.V., Popov, V.L., Psakhie, S.G., 2018, Simulation of fracture using a mesh-dependent fracture criterion in a discrete element method, Facta Universitatis, Series: Mechanical Engineering, 16(1), pp. 41-50.
Roters, F., Eisenlohr, P., Bieler, T.R., Raabe, D., 2010, Crystal plasticity finite element methods: in materials science and engineering, Wiley‐VCH Verlag GmbH & Co. KGaA.
Romanova, V.A., Balokhonov, R.R., 2009, Numerical simulation of surface and bulk deformation in three-dimensional polycrystals, Physical Mesomechanics, 12(3-4), pp. 130-140.
Busso, E.P., Cailletaud, G., 2005, On the selection of active slip systems in crystal plasticity, International Journal of Plasticity, 21(11), pp. 2212-2231.
Teplyakova, L.A., Bespalova, I.V., Lychagin, D.V., 2009, Spatial organization of deformation in aluminum [1 ī 2] single crystals in compression, Physical Mesomechanics, 3(12), pp. 166-174.
DOI: https://doi.org/10.22190/FUME190403028R
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4