FOURTH-ORDER STRAIN GRADIENT BAR-SUBSTRATE MODEL WITH NONLOCAL AND SURFACE EFFECTS FOR THE ANALYSIS OF NANOWIRES EMBEDDED IN SUBSTRATE MEDIA
Abstract
Keywords
Full Text:
PDFReferences
Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K., 2003, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97(1-4), pp. 481-494.
Kizuka, T., Takatani, Y., Asaka, K., Yoshizaki, R., 2005, Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width, Physical Review B, 72(3), 035333.
Ganapathi, M., Polit, O., 2018, A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams, Applied Mathematical Modelling, 57, pp. 121-141.
Demir, C., Mercan, K., Numanoglu, H.M., Civalek, O., 2018, Bending response of nanobeams resting on elastic foundation, Journal of Applied and Computational Mechanics, 4(2), pp. 105-114.
Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F., 2019, Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity, Journal of Applied and Computational Mechanics, 5(2), pp. 402-413.
Wen, Y.H., Zhu, Z.Z., Zhu, R.Z., 2008, Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects, Computational Materials Science, 41(4), pp. 553-560.
Domekeli, U., Sengul, S., Celtek, M., Canan, C., 2017, The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations, Philosophical Magazine, 98(5), pp. 371-387.
Frink, L.J.D., Salinger, A.G., Sears, M.P., Weinhold, J.D., Frischknecht, A.L., 2002, Numerical challenges in the application of density functional theory to biology and nanotechnology, Journal of Physics Condensed Matter, 14(46), pp. 12167-12187.
da Silva, E.Z., Novaes, F.D., da Silva, A.J.R., Fazzio, A., 2004, Theoretical study of the formation, evolution, and breaking of gold nanowires, Physical Review B, 69, 115411.
Wang, Q., Varadan, V.K., 2005, Stability analysis of carbon nanotubes via continuum models, Smart Materials and Structures, 14(1), pp. 281-286.
Khodabakhshi, P., Reddy, J.N., 2017, A unified beam theory with strain gradient effect and the von Kármán nonlinearity, ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik, 97(1), pp. 70-91.
Karličić, D., Murmu, T., Adhikari, S., McCarthy, M., 2016, Non‐local structural mechanics, ISTE Ltd and John Wiley & Sons, Inc.
Eringen, A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1), pp. 1-16.
Eringen, A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54(9), pp. 4703-4710.
Mindlin, R.D., Tiersten, H.F., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, pp. 415-448.
Ebrahimi, F., Barati, M.R., 2017, A modified nonlocal couple stress-based beam model for vibration analysis of higher-order FG nanobeams, Mechanics of Advanced Materials and Structures, 25(13), pp. 1121-1132.
Sourki, R., Hosseini, S.A., 2017, Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam, The European Physical Journal Plus, 132, 184.
Mindlin, R.D., 1964, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, pp. 51-78.
Mindlin, R.D., 1965, On the equations of elastic materials with micro-structure, International Journal of Solids and Structures, 1(1), pp. 73-78.
Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P., 2003, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8), pp. 1477-1508.
Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E., 2017, A review of continuum mechanics models for size-dependent analysis of beams and plates, Composite Structures, 177, pp. 196-219.
Hu, K.M., Zhang, W.M., Zhong, Z.Y., Peng, Z.K., Meng, G., 2014, Effect of surface layer thickness on buckling and vibration of nonlocal nanowires, Physics Letters A, 378(7-8), pp. 650-654.
Khodabakhshi, P., Reddy, J.N., 2015, A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, pp. 60-75.
Limkatanyu, S., Sae-Long, W., Horpibulsuk, S., Prachasaree, W., Damrongwiriyanupap, N., 2018, Flexural responses of nanobeams with coupled effects of nonlocality and surface energy, ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik, 98(10), pp. 1771-1793.
Peddieson, J., Buchanan, G.R., McNitt, R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41(3-5), pp. 305-312.
Challamel, N., Wang, C.M., 2008, The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology, 19(34), 345703.
Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F., 2017, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, 121, pp. 151-156.
Altan, B.S., Aifantis, E.C., 1997, On some aspects in the special theory of gradient elasticity, Journal of the Mechanical Behavior of Materials, 8(3), pp. 231-282.
Narendar, S., Gopalakrishnan, S., 2010, Ultrasonic wave characteristics of nanorod via nonlocal strain gradient models, Journal of Applied Physics, 107(8), 084312.
Askes, H., Suiker, A.S.J., Sluys, L.J., 2002, A classification of higher-order strain-gradient models – linear analysis, Archive of Applied Mechanics, 72, pp. 171-188.
Zaera, R., Serrano, Ó., Fernández-Sáez, J., 2019, On the consistency of the nonlocal strain gradient elasticity, International Journal of Engineering Science, 138, pp. 65-81.
Kong, S., Zhou, S., Nie, Z., Wang, K., 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, 47(4), pp. 487-498.
Barretta, R., Marotti de Sciarra, F., 2013, A nonlocal model for carbon nanotubes under axial loads, Advances in Materials Science and Engineering, 360935.
Marotti de Sciarra, F., Barretta, R., 2014, A new nonlocal bending model for Euler–Bernoulli nanobeams, Mechanics Research Communications, 62, pp. 25-30.
Marotti de Sciarra, F., 2014, Finite element modelling of nonlocal beams, Physica E: Low-dimensional Systems and Nanostructures, 59, pp. 144-149.
Marotti de Sciarra, F., Barretta, R., 2014, A gradient model for Timoshenko nanobeams, Physica E: Low-dimensional Systems and Nanostructures, 62, pp. 1-9.
Sae-Long, W., Limkatanyu, S., Prachasaree, W., Rungamornrat, J., Sukontasukkul, P., 2020, A thermodynamics-based nonlocal bar-elastic substrate model with inclusion of surface-energy effect, Journal of Nanomaterials, 8276745.
Miller, R.E., Shenoy, V.B., 2000, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11(3), pp. 139-147.
Huang, D.W., 2008, Size-dependent response of ultra-thin films with surface effects, International Journal of Solids and Structures, 45(2), pp. 568-579.
Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T., 2011, Surface stress effect in mechanics of nanostructured materials, Acta Mechanica Solida Sinica, 24(1), pp. 52-82.
Liu, H., Song, H., Feng, X., Yang, J., 2014, Surface effects on the persistence length of nanowires and nanotubes, Theoretical and Applied Mechanics Letters, 4(5), 051009.
Gurtin, M.E., Murdoch, I., 1975, A continuum theory of elastic material surface, Archive for Rational Mechanics and Analysis, 57(4), pp. 291-323.
Gurtin, M.E., Murdoch, I., 1978, Surface stress in solids, International Journal of Solids and Structures, 14(6), pp. 431-440.
Liu, C., Rajapakse, R.K.N.D., 2010, Continuum models incorporating surface energy for static and dynamic response of nanoscale beams, IEEE Transactions on Nanotechnology, 9(4), pp. 422-431.
Fu, Y., Zhang, J., Jiang, Y., 2010, Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams, Physica E: Low-dimensional Systems and Nanostructures, 42(9), pp. 2268-2273.
Fu, G., Zhou, S., Qi, L., 2019, A size‐dependent Bernoulli‐Euler beam model based on strain gradient elasticity theory incorporating surface effects, ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik, 99(6), pp. 1-22.
Lim, C.W., He, L.H., 2004, Size-dependent nonlinear response of thin elastic films with nano-scale thickness, International Journal of Mechanical Sciences, 46(11), pp. 1715-1726.
Sahmani, S., Aghdam, M.M., Akbarzadeh, A.H., 2016, Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load, Materials & Design, 105, pp. 341-351.
Limkatanyu, S., Damrongwiriyanupap, N., Prachasaree, W., Sae-Long, W., 2013, Modeling of axially loaded nanowire embedded in elastic substrate media including nonlocal and surface effects, Journal of Nanomaterials, 635428.
Limkatanyu, S., Prachasaree, W., Damrongwiriyanupap, N., Kwon, M., 2014, Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach, Journal of Engineering Mathematics, 89, pp. 163-176.
Klusemann, B., Bargmann, S., Estrin, Y., 2016, Fourth-order strain-gradient phase mixture model for nanocrystalline fcc materials, Modelling and Simulation in Materials Science and Engineering, 24, 085016.
Morfidis, K., 2003, Research and development of methods for the modeling of foundation structural elements and soil, PhD dissertation, Department of Civil Engineering, Aristotle University of Thessaloniki, Greece.
Avramidis, I.E., Morfidis, K., 2006, Bending of beams on three-parameter elastic foundation, International Journal of Solids and Structures, 43(2), pp. 357-375.
Wolfram, S., 1992, Mathematica reference guide, Addison-Wesley Publishing Company, Redwood City, California.
Winkler, E., 1867, Die Lehre von der und Festigkeit, Dominicus, Prag.
Tonti, E., 1976, The reason for analogies between physical theories, Applied Mathematical Modelling, 1(1), pp. 37-50.
Juntarasaid, C., Pulngern, T., Chucheepsakul, S., 2012, Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity, Physica E: Low-dimensional Systems and Nanostructures, 46, pp. 68-76.
He, J., Lilley, C.M., 2008, Surface effect on the elastic behavior of static bending nanowires, Nano Letters, 8(7), pp. 1798-1802.
Shenoy, V.B., 2006, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, 74(14), 149901.
Liew, K.M., He, X.Q., Kitipornchai, S., 2006, Predicting nanovibration of multi-layer grapheme sheets embedded in an elastic matrix, Acta Materialia, 54(16), pp. 4229-4236.
Assadi, A., Farshi, B., Alinia-Ziazi, A., 2010, Size dependent dynamic analysis of nanoplates, Journal of Applied Physics, 107(12), 124310.
Jiang, L.Y., Yan, Z., 2010, Timoshenko beam model for static bending of nanowires with surface effects, Physica E: Low-dimensional Systems and Nanostructures, 42(9), pp. 2274-2279.
Limkatanyu, S., Kuntiyawichai, K., Spacone, E., Kwon, M., 2012, Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation, Structural Engineering and Mechanics, 42(1), pp. 39-53.
Khajeansari, A., Baradaran, G.H., Yvonnet, J., 2012, An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic substrate medium based on the Euler-Bernoulli beam theory, International Journal of Engineering Science, 52, pp. 115-128.
DOI: https://doi.org/10.22190/FUME201009045S
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4