MODELING OF TITANIUM ALLOYS PLASTIC FLOW IN LINEAR FRICTION WELDING
Abstract
Keywords
Full Text:
PDFReferences
Heidarzadeh, A., Mironov, S., Kaibyshev, R., Cam, G., Simar, A., Gerlich, A., Khodabakhshi, F., Mostafaei, A., Field, D.P., Robson, J.D., Deschamps, A., Withers, P. J., 2020, Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Progress in Materials Science, 100752.
Venu, B., BhavyaSwathi, I., Raju, L.S., Santhanam G., 2019, A review on friction stir welding of various metals and its variable, Materials Today: Proceedings, 18, Part 1, pp. 298-302.
Sai, S., Dhinakaran, M., Manoj, V., Kumar, K. P., Rajkumar, V., Stalin, B., Sathish, T., 2020, A systematic review of effect of different welding process on mechanical properties of grade 5 titanium alloy, Materials Today: Proceedings, 21, Part 1, pp. 948-953.
Gotawala, N., Shrivastava A., 2020, Microstructural analysis and mechanical behavior of SS 304 and titanium joint from friction stir butt welding, Materials Science & Engineering, A, 789, 139658.
Lachowicz, D.S., Bennett, C., Axinte, D.A., Lowth, S., Walpole, A., Hannon, C., 2021, On the influence of tooling behaviour over axial shortening mechanisms in linear friction welding of titanium alloys and modelling plasticisation effects, International Journal of Machine Tools and Manufacture, 161, 103674.
Ji, Y., Chai, Z., Zhao, D., Wu, S., 2014, Linear friction welding of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy with dissimilar microstructure, Journal of Materials Processing Technology, 214(4), pp. 979–987.
Okeke, S., Harrison, N., Tong, M., 2020, Thermomechanical modelling for the linear friction welding process of Ni-based superalloy and verification, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(5), pp. 796-815.
Li, W.-Y., Ma, T., Li, J., 2010, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Materials and Design, 31(3), pp. 1497–1507.
Vairis, A., Frost, M., 2000, Modelling the linear friction welding of titanium blocks, Materials Science and Engineering A, 292(1), pp. 8–17.
Su, Y., Li, W., Wang, X., Ma, T., Yang, X., Vairis, A., 2018, On microstructure and property differences in a linear friction welded near-alpha titanium alloy joint, Journal of Manufacturing Processes, 36, pp. 255–263.
Li, J., Shen, Y., Hou, W., Qi, Y., 2020, Friction stir welding of Ti-6Al-4V alloy: Friction tool, microstructure, and mechanical properties, Journal of Manufacturing Processes, 58, pp. 344–354.
Gangwar, K., Ramulu, M., 2018, Friction stir welding of titanium alloys: A review, Materials & Design, 141, pp. 230–255.
Lauro, A., 2012, Friction stir welding of titanium alloys, Welding International, 26(1), pp. 8–21.
Fall, A., Monajati, H., Khodabandeh, A., Fesharaki, M. H., Champliaud, H., Jahazi, M., 2019, Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy, Materials Science and Engineering A., 2019, pp. 166-175.
He, X., Gu, F., Ball, A., 2014, A review of numerical analysis of friction stir welding, Progress in Materials Science, 65, pp. 1-66.
Zhang, Z.; Tan, Z., 2019, A multi scale strategy for simulation of microstructural evolutions in friction stir welding of duplex titanium alloy, Journal High Temperature Materials and Processes, 38, pp.485-497.
Popov, V.L., Pohrt, R., Li, Q., 2017, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 5, pp. 308–325.
Chauhan, P., Jain, R., Pal, S.K., Singh S.B., 2018, Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method, Journal of Manufacturing Processes, 34, pp. 158–166.
Balokhonov, R., Romanova, V., Batukhtina, E., Sergeev, M., Emelianova, E., 2018, A numerical study of the microscale plastic strain localization in friction stir weld zones, Facta Univesitatis-Series Mechanical Engineering, 16(1), pp. 77-86.
Smolin, A.Y., Shilko, E.V., Astafurov, S.V., Kolubaev, E.A., Eremina, G.M., Psakhie, S.G., 2018, Understanding the mechanisms of friction stir welding based on computer simulation using particles, Defence Technology, 14(6), pp. 643-656.
Yan, F., Zhang, Y., Fu, X., Li, Q., Gao, J., 2019, A new calculating method of frictional heat and its application during Friction Stir Welding, Applied Thermal Engineering, 153, pp 250-263.
Rzaev, R., Dzhalmukhambetov, A., Chularis, A., Valisheva, A., 2019, Mathematical modeling of process of the Friction Stir Welding, Materials Today: Proceedings, 11, pp. 591–599.
Tartakovsky, A., Grant, G., Sun, X., Khaleel, M., 2006, Modelling of Friction Stir Welding (FSW) process with smooth particle hydrodynamics (SPH), SAE Technical Paper Series, 01, 1394.
Tartakovsky, A.M., Meakin, P., 2005, Modelling of surface tension and contact angles with smoothed particle hydrodynamics, Physics Review E, 72, 026301.
Skripnyak, V.V., Skripnyak, V.A., 2020, Fracture of titanium alloys at high strain rates and under stress triaxiality, Metals, 10(3), 305.
Skripnyak, V.V., Kozulin, A.A., Skripnyak, V.A., 2019, The influence of stress triaxiality on ductility of α titanium alloy in a wide range of strain rates, Materials Physics and Mechanics, 42(4), pp. 415-422.
Sharkeev, Yu. P, Legostaeva, E.V., Vavilov, V.P., Skripnyak, V.A., Belyavskaya, O.A., Eroshenko A.Yu., Glukhov, I.A., Chulkov, A.A., Kozulin, A.A., Skripnyak, V.V., 2019, Regular features of stage formation in the stress strain curves and microstructure in the zone of fracture of coarse-grained and ultrafine-grained titanium and zirconium alloys, Russian Physics Journal, 62(8), pp. 1349-1356.
Sharkeev, Y., Vavilov, V., Skripnyak, V.A., Belyavskaya, O., Legostaeva, E., Kozulin, A., Chulkov, A., Sorokoletov, A., Skripnyak, V.V., Eroshenko, A., Kuimova, M., 2018, Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography, Metals, 8(9), 703.
Skripnyak, V.V., Skripnyak, V.A., Skripnyak, E.G., 2019, Fracture of titanium alloys at high strain rates and stress triaxiality, Proc. 8th International Conference M2D-2019, Mechanics and Materials in Design, Bologna, pp. 81-82.
McAndrew, A.R., Colegrove, P.A., Flipo, B.C.D., Bühr, C., 2016, 3D modelling of Ti–6Al–4V linear friction welds, Science and Technology of Welding and Joining, 22(6), pp. 496–504.
Neilsen, K.L., Tvergaard, V., 2010, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, Engineering Fracture Mechanics, 77, pp. 1031–1047.
Tvergaard, V., 2015, Study of localization in a void-sheet under stress states near pure shear, International Journal Solids and Structures, 60–61, pp. 28–34.
Shi, X., Zhao, C., Cao, Z., Zhang, T., Wang, T., Qiao, J., 2019, Mechanical behavior of a near α titanium alloy under dynamic compression: Characterization and modeling, Progress in Natural Science: Materials International, 29, pp. 432–439.
Donachie, M.J. Jr. Titanium A technical guide. Second Edition ASM Materials Park, Ohio, 2000.
Bros, H., Michel, M.-L., Castanet, R., 1994, Enthalpy and heat capacity of titanium based alloys, Journal of Thermal Analysis, 41, pp. 7–24.
Spigarelli, S., Ruano, O.A., El Mehtedi, M., del Valle, J.A., 2013, High temperature deformation and microstructural instability in AZ31 magnesium alloy, Materials Science and Engineering A, 570, pp. 135–148.
Turner, R., Gebelin, J.-C., Ward, R.M., Reed, R.C., 2011, Linear friction welding of Ti–6Al–4V: Modelling and validation, Acta Materialia, 59(10), pp. 3792–3803.
Springmann, M., Kuna, M., 2005, Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques, Computational Material Science, 32, pp. 544–552.
Philip, J.T, Mathew J., Kuriachen B., 2019, Tribology of Ti6Al4V: A review, Friction, 7(6), pp. 497–536.
DOI: https://doi.org/10.22190/FUME201225014S
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4