ON THE INFLUENCE OF MULTIPLE EQUILIBRIUM POSITIONS ON BRAKE NOISE

Sebastian Koch, Emil Köppen, Nils Gräbner, Utz von Wagner

DOI Number
https://doi.org/10.22190/FUME210106020K
First page
613
Last page
632

Abstract


Brake noise, especially brake squeal, has been a subject of intensive research both in industry and academia for several decades. Nevertheless, the state of the art simulations does not provide a predictive tool, and extensive experimental investigations are still necessary to find an appropriate design. Actual investigations focus on the consideration of nonlinearities which are in fact essential for this phenomenon. Unfortunately, by far not all relevant effects caused by nonlinearities are known. One of these nonlinear effects that the actual research focuses on is the limit cycle behavior representing squeal. In contrast to this, the actual paper considers the influence of the equilibrium position established while applying the brake pressure. The elements of the brake, namely, the carrier, caliper and pad, are highly nonlinear and elastically coupled and allow for multiple equilibrium positions depending e.g. on the initial conditions and transient application of the brake pressure while the frictional contact between the pads and the disk may excite small amplitude self-excited vibrations around this equilibrium, i.e. squeal. The current paper establishes a method and corresponding setup, to measure the position engaged by the brake components using an optical 3D-measuring system. Subsequently, it is demonstrated that in fact different equilibrium positions can be engaged for the same operation parameters and that the engaged position can be decisive for the occurrence of squeal. In fact, certain positions result in squeal while others do not for the same operation parameters. Taking this effect into consideration may have significant consequences for the design of brakes as well as simulation and experimental investigation of brake squeal.

Keywords

Brake Noise, Nonlinearities, Equilibrium Positions, Digital Image Correlation

Full Text:

PDF

References


Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P., 2003, Automotive disk brake squeal, Journal of Sound and Vibration, 267, pp. 105-166.

Cantoni, C., Cesarini, R., Mastinu, G., Rocca, G., Sicigliano, R., 2009, Brake comfort - a review, Vehicle Systems Dynamics, 47(8), pp. 901-947.

Dunlap, K.B., Riehle, M.A., Longhouse, R. E., 1999, An investigative overview of automotive disc brake noise, SAE transactions, pp. 515-522.

Chen, F., Abdelhamid, M.K., Blaschke, P., Swayze, J., 2003, On automotive disc brake squeal part III test and evaluation, SAE Technical Paper, 2003-01-1622.

Stump, O., Könning, M., Seemann, W., 2017, Transient Squeal Analysis of a Non Steady State Maneuver, EuroBrak.

Stump, O., Nunes, R., Häsler, K., Seemann, W., 2019, Linear and nonlinear stability analysis of a fixed caliper brake during forward and backward driving, Journal of Vibration and Acoustic, 141(3), pp. 2161-2170.

Bonnay, K., Magnier, V., Brunel, J.F., Dufrénoy, P., De Saxce, G., 2015, Influence of geometry imperfections on squeal noise linked to mode lock-in, Internal Journal of Solids and Structures, 75/76, pp. 99-108.

Intes, 2012, PERMAS User´s Reference Manual, Stuttgart: INTES Publication No. 450.

Ouyang, H., Nack, W., Yuan, Y., Chen, F., 2005, Numerical analysis of automotive disc brake squeal: a review, International Journal of Vehicle Noise and Vibration, 1(3-4), pp. 207-231.

Hochlenert, D., von Wagner, U., 2011, How do nonlinearities influence brake squeal?, SAE Technical paper 2011-01-2365, pp. 179-186.

Gräbner, N., 2016, Analyse und Verbesserung der Simulationsmethode des Bremsenquietschens, PhD Thesis, Technische Universität Berlin, Germany, 114 p.

Tiedemann, M., Kruse, S., Hoffmann, N., 2015, Dominant damping effects in friction brake noise, vibration and harshness: the relevance of joints, Proceeding of the Institute of Mechanical Engineers Part D: Journal of Automobile Engineering, 229(6), pp. 728-734.

Martin, G., Vermot des Roches, G., Balmes, E., Chancelier, T., 2019, MDRE: An efficient expansion tool to perform model updating from squeal measurements, Proceedings of EuroBrake 2019.

Tison, T., Heussaff, A., Massa, F., Turpin, I., Nunes, R.F., 2014, Improvement in the predictivity of squeal simulations: Uncertainty and robustness, Journal of Sound and Vibration, 333(15), pp. 3394-3412.

Kruse, S., Tiedemann, M., Zeumer, B., Reuss, P., Hoffmann, N., Hetzler, H., 2015, The influence of joints on friction induced vibration in brake squeal, Journal of Sound and Vibration, 340, pp. 239-252.

Koch, S., Gräbner, N., Gödecker, H., von Wagner, U., 2017, Nonlinear multiple body models for brake squeal, PAMM, 17(1), pp. 33-36.

Massi, F., Baillet, L., Giannini, O., Sestieri, A., 2007, Brake squeal: Linear and nonlinear numerical approaches, Mechanical Systems and Signal Processing, 21(6), pp. 2374-2393.

Oberst, S., Lai, J.C.S., 2015, Nonlinear transient and chaotic interactions in disc brake squeal, Journal of Sound and Vibration, 342, pp. 272-289.

Nacivet, S., Sinou, J.-J., 2017, Modal amplitude stability analysis and its application to brake squeal, Applied Acoustics, 116, pp. 127-138.

Gräbner, N., Tiedemann, M., von Wagner, U., Hoffmann, N., 2014, Nonlinearities in friction brake NVH-experimental and numerical studies, SAE Technical Paper, 2014-01-2511.

Koch, S., 2021, Main components floating caliper brake, Dataset: doi:10.6084/m9.figshare.13663556.v1 (https://figshare.com/articles/figure/Main_components_floating_caliper_prake_pdf/13663556,last access: 11.02.2021)

Koch, S., 2021, Overview test bench with optical 3D measuring system, Dataset: doi:10.6084/m9.figshare.13663622.v1 (https://figshare.com/articles/figure/Overview_test_bench_with_optical_3D_measuring_system_pdf/13663622,last access: 11.02.2021)

Koch, S., 2021, Details test Bench with optical 3D measuring system, Dataset: doi:10.6084/m9.figshare.13663631.v1 (https://figshare.com/articles/figure/Details_test_Bench_with_optical_3D _measuring_system/13663631, last access: 11.02.2021)

GOM GmbH, 2016, Technische Dokumentation: Grundlagen der digitalen Bildkorrelation und Dehnungsberechnung. V8 SR1, Braunschweig, Germany.

Bing, P., Hui-Min, X., Bo-Qin, X., Fu-Long, D., 2006, Performance of sub-pixel registration algorithms in digital image correlation, Measurement Science and Technology, 17(6), pp. 1615-1621.

Sutton, M. A., Orteu, J. J., Schreier, H., 2009, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer Science & Business Media, 321 p.

Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H. W., Orteu, J.J., 2008, The effect of out-of-plane motion on 2D and 3D digital image correlation measurements, Optics and Lasers in Engineering, 46(10), pp. 746-757.

Beranek, L.L., Ver, I.L., 1992, Noise and vibration control engineering: principles and applications, John Wiley & Sons, 966 p.

Koch, S., 2021, Power spectrum with squealing frequency, Dataset: doi:10.6084/m9.figshare.13663694.v1 (https://figshare.com/articles/figure/power_spectrum_with_squealing_frequency/13663694/1, last access: 11.02.2021)

Koch, S., 2021, Equilibrium positions, Dataset: doi:10.6084/m9.figshare.13673059.v2 (https://figshare.com/articles/figure/equilibrium_positions/13673059/2, last access: 11.02.2021)




DOI: https://doi.org/10.22190/FUME210106020K

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4