CISPLATIN - AN OVERVIEW OF ITS EFFICIENCY AND TOXICITY

Marija Djordjević, Jovan Ilić, Nikola M. Stojanovic

DOI Number
https://doi.org/10.22190/FUMB230122002D
First page
025
Last page
035

Abstract


Cisplatin is the first heavy metal compound that has been found to possess antineoplastic activity. It is effective in treating testicular, ovarian, head and neck, bladder, cervical, esophageal tumors, and small cell lung carcinoma. Approximately 1% of cisplatin that enters the cell interacts with DNA, forming DNA-cisplatin bonds. Both apoptosis and necrosis can be found in the same population of cells exposed to cisplatin, and the mode of cell death depends on the cisplatin concentration and metabolic state of the target cell. In the bloodstream, the platinum component of cisplatin binds to the blood's proteins (hemoglobin, albumin and transferrin), and other significant portion binds to the glutathione and other cysteine-rich biomolecules. Cisplatin impairs the mitochondrial and cell antioxidant defense system (decreases GSH, NADPH levels, GCH/GSSG ratio, and increases GSSG levels) leading to oxidative stress. There are three main mechanisms of cell resistance to cisplatin: (1) enhanced repair of cisplatin-induced DNA lesions, (2) decrease in uptake and/or increase in efflux and (3) inactivation of cisplatin intracellularly. The usage of cisplatin is limited due to its toxicity and side effects, which include neurotoxicity (numbness and tingling, paresthesia, reduced deep tendon reflexes), nephrotoxicity (renal insufficiency, hypomagnesemia), ototoxicity (tinnitus and bilateral high-frequency hearing loss), cardiotoxicity (changes in electric heart activity, congestive heart failure), gastrotoxicity (nausea, vomiting, and dyspepsia), etc.  So far, there  has been no effective, clinically administered, therapy for cisplatin-induced toxicity.


Keywords

cisplatin, oxidative stress, drug resistance, apoptosis, toxicity

Full Text:

PDF

References


Loehrer PJ, Einhorn LH. Drugs five years later. Cisplatin. Ann Intern Med 1984;100(5):704-13.

Arnesano F, Natile G. Mechanistic insight into the cellular uptake and processing of cisplatin 30 years after its approval by FDA. Coord Chem Rev 2009;253(15-16):2070–81.

Macciò A, Madeddu C. Cisplatin: an old drug with a newfound efficacy – from mechanisms of action to cytotoxicity. Expert Opin on Pharmacoth 2013;14(13):1839–57.

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364-78.

Gómez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. On the discovery, biological effects, and use of Cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl 2012;2012:140284.

Giaccone G. Clinical perspectives on platinum resistance. Drugs 2000;59 Suppl 4:9–17: discussion 37-8.

Fuertes MA, Alonso C, Perez JM. Biochemical ´modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003;103(3):645–62.

Aldossary SA. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharm J 2019;12(1):7-15.

Lukka H, Hirte H, Fyles A, et al. Concurrent Cisplatin-based Chemotherapy plus Radiotherapy for Cervical Cancer–a Meta-analysis. Clin Oncol 2002; 14(3):203–2.

De Vries G, Rosas-Plaza X, van Vugt MATM, Gietema JA, de Jong S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev 2020;88:102054

Posner MR, Hershock DM, Blajman CR, et al. TAX 324 Study Group. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007:357(17):1705-15.

Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman M A, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 1999: 340(15):1144-53.

Lukka H, Hirte H, Fyles A, Thomas G, Elit L, Johnston M, et al. Concurrent Cisplatin-based Chemotherapy plus Radiotherapy for Cervical Cancer–a Meta-analysis. Clinical Oncology 2002:14(3):203–12.

Kranjc Brezar S, Prevc A, Niksic Zakelj M, Brozic A, Cemazar M, Strojan P, et al. Synergistic effect of cisplatin chemotherapy combined with fractionated radiotherapy regimen in HPV-positive and HPV-negative experimental pharyngeal squamous cell carcinoma. Sci Rep 2020:10(1):1-9.

Noronha V, Joshi A, Patil VM, Agarwal J, Ghosh-Laskar S, Budrukkar A, et al. Once-a-week versus once-every-3-weeks cisplatin chemoradiation for locally advanced head and neck cancer: a phase III randomized noninferiority trial. J Clin Oncol 2018:36(11):1064-1072.

Machiels JP, Leemans CR, Golusinski W, Grau C, Licitra L, Gregoire V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020:31(11):1462-75.

Eapen l, Stewart D, Collins J, Peterson R. (2004). Effective bladder sparing therapy with intra-arterial cisplatin and radiotherapy for localized bladder cancer. J Urol 2004:172(4);1276–80.

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20.

Rebillard A, Lagadic-Gossmann D, Dimanche-Boitrel MT. Cisplatin cytotoxicity: DNA and plasma membrane targets. Curr Med Chem 2008;15:2656-63.

Burstyn JN, Heiger-Bernays WJ,Cohen SM, Lippard SJ. Formation of cis-diamminedichloroplatinum (II) 1, 2-intrastrand cross-links on DNA is flanking-sequence independent. Nucleic Acid Res 2000;28:4237-43.

Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021;13:303-328.

Sorenson CM, Eastman A. Influence of cis-diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells. Cancer Res 1988;48:6703-7.

Sancho-Martínez SM, Piedrafita FJ, Cannata-Andía JB, López-Novoa JM, López-Hernández FJ. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci 2011;122(1):73-85.

Kumar S, Tchounwou PB. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget 2015;6(38):40734–46.

Zeng H, Zhang S, Yang KY, Wang T, Hu JL, Huang LL, Wu G. Knockdown of second mitochondria-derived activator of caspase expression by RNAi enhances growth and cisplatin resistance of human lung cancer cells. Cancer Biother Radiopharm 2010;25(6):705-12.

Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 2013;5(6):a008672.

Gonzalez VM, Fuertes MA, Alonso C, Perez JM. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001;59(4):657-63.

Jensen M, Bjerring M, Nielsen NC, Nerdal W. Cisplatin interaction with phosphatidylserine bilayer studied by solid-state NMR spectroscopy. J Biol Inorg Chem 2010;15:213-23.

Pérez JM, Montero EI, González AM, Alvarez-Valdés A, Alonso C, Navarro-Ranninger C. Apoptosis induction and inhibition of H-ras overexpression by novel trans-[PtCl2(isopropylamine)(amine')] complexes. J Inorg Biochem 1999;77(1-2):37-42.

Melnikov SV, Söll D, Steitz TA, Polikanov YS. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res 2016;44(10):4978-87.

Chapman EG, DeRose VJ. Site-specific platinum(II) cross-linking in a ribozyme active site. J Am Chem Soc 2012;134:256–62.

Messori L, Merlino A. Cisplatin binding to proteins: A structural perspective. Coord Chem Rev 2016;315:67-89.

Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 2007;26(1):71-83.

Messori L, Marzo T, Merlino A. Interactions of carboplatin and oxaliplatin with proteins: Insights from X-ray structures and mass spectrometry studies of their ribonuclease A adducts. J Inorg Biochem 2015;153:136-142.

Zhang N, Liu H, Cui M, Du Y, Liu Z, Liu S. Direct determination of the binding sites of cisplatin on insulin-like growth factor-1 by top-down mass spectrometry. J Biol Inorg Chem 2015;20(1):1-10.

Will J, Wolters DA, Sheldrick WS. Characterisation of cisplatin binding sites in human serum proteins using hyphenated multidimensional liquid chromatography and ESI tandem mass spectrometry. Chem Med Chem 2008;3(11):1696-707.

Peleg-Shulman T, Gibson D. Cisplatin−Protein Adducts Are Efficiently Removed by Glutathione but Not by 5‘-Guanosine Monophosphate. J Am Chem Soc 2001;123(13):3171–2.

Santos NA, Catão CS, Martins NM, Curti C, Bianchi ML, Santos AC. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 2007;81(7):495-504.

Martins NM, Santos NAG, Curti C, Bianchi MLP, Santos AC. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. Journal of Applied Toxicology 2008;28(3):337–44.

Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016;106:27-36.

Richon VM, Schulte N, Eastman A. Multiple mechanisms of resistance to cis-diamminedichloroplatinum(II) in murine leukemia L1210 cells. Cancer Res. 1987;47(8):2056–61.

Wood RD, Araujo SJ, Ariza RR, et al. DNA damage recognition and nucleotide excision repair in mammalian cells. Cold Spring Harb Symp Quant Biol 2000;65:173–82.

Ahmad A, Robinson AR, Duensing A, et al. ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 2008;28:5082–92.

Bellmunt J, Paz-Ares L, Cuello M, et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatinbased chemotherapy. Ann Oncol 2007;18:522–8.

Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19:4298–304.

Metzger R, Leichman CG, Danenberg KD, et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998;16:309–16.

Kim MK, Cho KJ, Kwon GY, et al. Patients with ERCC1-negative locally advanced esophageal cancers may benefit from preoperative chemoradiotherapy. Clin Cancer Res 2008;14:4225–31.

Dabholkar M, Bostick-Bruton F, Weber C, Bohr VA, Egwuagu C, Reed E. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J Natl Cancer Inst 1992;84:1512–7.

Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355: 983–91.

Olaussen KA. A new step ahead for the consideration of ERCC1 as a candidate biomarker to select NSCLC patients for the treatment of cetuximab in combination with cisplatin. Cancer Biol Ther 2009;8:1922–3.

Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005;74:681–710.

Vaisman A, Varchenko M, Umar A, et al. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 1998;58:3579-85.

Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res 1998;4:1–6.

Kamal NS, Soria JC, Mendiboure J, et al. MutS homologue 2 and the long-term benefit of adjuvant chemotherapy in lung cancer. Clin Cancer Res 2010;16:1206–15.

Gifford G, Paul J, Vasey PA, Kaye SB, Brown R. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 2004;10:4420–6.

Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31(15):1869-83.

Eichholtz-Wirth H, Hietel B. The relationship between cisplatin sensitivity and drug uptake into mammalian cells in vitro. Br J Cancer 1986;54(2):239–43.

Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM. The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 2008;48:495-535.

Ishida S, McCormick F, Smith-McCune K, Hanahan D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 2010;17(6):574-83.

Blair BG, Larson CA, Rafraei R, Howell SB. Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 2009;15(13);4312–21.

Yoshida H, Teramae M, Yamauchi M, et al. Association of copper transporter expression with platinum resistance in epithelial ovarian cancer. Anticancer Res 2013;33(4):1409-14.

More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinuminduced ototoxicity. J Neurosci 2010;30:9500–9.

Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat 2011;14(1);22–34.

Ishikawa T, Ali-Osman F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 1993;268(27):20116-25.

Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 1992;89(7):3070-4.

Yang YY, Woo ES, Reese CE, Bahnson RR, Saijo N, Lazo JS. Human metallothionein isoform gene expression in cisplatin-sensitive and resistant cells. Mol Pharmacol 1994;45(3):453-60.

Kasahara K, Fujiwara Y, Nishio K, et al. Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res 1991;51(12):3237-42.

Siegsmund MJ, Marx C, Seemann O, et al. Cisplatin-resistant bladder carcinoma cells: enhanced expression of metallothioneins. Urol Res 1999;27(3):157-63.

Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci 2007;334(2):115-24.

Townsend DM, Tew KD, He L, King JB, Hanigan MH. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother 2009;63(2):79-85.

Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 2003;14(1):1-10.

Townsend DM, Hanigan MH. Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 2002;300(1):142-8.

Zhang L, Hanigan MH. Role of cysteine S-conjugate beta-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 2003;306(3):988-94.

Hanigan MH, Gallagher BC, Taylor PT Jr, Large MK. Inhibition of gamma-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity. Cancer Res. 1994;54:5925-9.

Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61(3):223-42.

Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z. Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 2007;293(4):F1282-91.

Jiang M, Yi X, Hsu S, Wang CY, Dong Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am J Physiol Renal Physiol 2004;287(6):F1140-7.

Nishikawa M, Nagatomi H, Chang BJ, Sato E, Inoue M. Targeting superoxide dismutase to renal proximal tubule cells inhibits mitochondrial injury and renal dysfunction induced by cisplatin. Arch Biochem Biophys 2001;387:78:84.

Faubel S, Lewis EC, Reznikov L, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 2007;322(1):8-15.

Lu LH, Oh DJ, Dursun B, He Z, Hoke TS, Faubel S, Edelstein CL. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J Pharmacol Exp Ther 2008;324(1):111-7.

Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2018;31(1):15-25.

Yatsu T, Aoki M, Inagaki O. Preventive effect of zelandopam, a dopamine D1 receptor agonist, on cisplatin-induced acute renal failure in rats. Eur J Pharmacol 2003;461(2-3):191-5.

Delbancut A, Lagroye I, Cambar J. Renal cytotoxicity of cisplatin in cultured glomerular mesangial and proximal and distal tubular cells. Toxicol In Vitro 1994;8(4):517-9.

Goldstein RS, Mayor GH. Minireview. The nephrotoxicity of cisplatin. Life Sci. 1983 Feb 14;32(7):685-90. doi: 10.1016/0024-3205(83)90299-0.

Potić, M, Ignjatović I, Nickovic V, et al. Two different melatonin treatment regimens prevent an increase in kidney injury marker-1 induced by carbon tetrachloride in rat kidneys. Can J Physiol Pharmacol 2009;97(5):422-8.

Mitić BP, Mitić DM, Radić MS, et al. (2022). Honeybee Propolis Phenol, Caffeic Acid Phenethyl Ester, Attenuates Cisplatin-Induced Kidney Damage-a Multitarget Approach. Records of Natural Products 2022;16(4).

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2010;2(11):2490-518.

Raja W, Mir MH, Dar I, Banday MA, Ahmad I. Cisplatin induced paroxysmal supraventricular tachycardia. Indian J Med Paediatr Oncol 2013;34:330-2.

Altena R, Hummel YM, Nuver J, et al. Longitudinal changes in cardiac function after cisplatin-based chemotherapy for testicular cancer. Ann Oncol 2011;22:2286-93.

Patanè, S. Cardiotoxicity: anthracyclines and long term cancer survivors. Int J Cardiol 2014;176(3):1326-8.

Rosic G, Selakovic D, Joksimovic J, et al. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 2016;242:34-46.

Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 2016;371:58-66.

Marrer E, Dieterle F. Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 2010;243:167-179.

El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact 2014;207:58-66.

Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced 25 cardiotoxicity by modulating inflammatory and endosplasmic reticulum stress responses. Biofactors 2016;42(6):647-64.

El-Awady el-SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: mechanisms and cardioprotective strategies. Eur J Pharmacol 2011;650:335-41.

Albers JW, Chaudhry V, Cavaletti G, Donehower RC. Interventions for preventing neuropathy caused by cisplatin and related compounds. CDSR 2014;(3).

Pace A, Savarese A, Picardo M, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol 2003;21(5):927‐31.

Lin PC, Lee MY, Wang WS, et al. N‐acetylcysteine has neuroprotective effects against oxaliplatin‐based adjuvant chemotherapy in colon cancer patients: preliminary data. Support Care Cancer 2006;14(5):484‐7.

Rademaker-Lakhai JM, Crul M, Zuur L, et al. Relationship between cisplatin administration and the development of ototoxicity. J Clin Oncol 2006;24(6):918-24.

Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 2007;226(1-2):157-67.

Crawford J. Cancer cachexia: Are we ready to take a step forward?. Cancer 2018;124(3):456-8.

Rapoport BL, Molasiotis A, Raftopoulos H, Roila F. Chemotherapy-Induced Nausea and Vomiting. Biomed Res Int 2015;2015:457326.

Oun R , Moussa YE , Wheate NJ . The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 2018;47(19):6645-53.

Waseem M, Bhardwaj M, Tabassum H, Raisuddin S, Parvez S. Cisplatin hepatotoxicity mediated by mitochondrial stress. Drug Chem Toxicol 2015;38(4):452-9.

Chun YS, Laurent A, Maru D, Vauthey JN. Management of chemotherapy-associated hepatotoxicity in colorectal liver metastases. Lancet Oncol 2010;10(3):278-86.

Cüre MC, Cüre E, Kalkan Y, et al. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats. Balkan Med J 2016;33(5):504-11.




DOI: https://doi.org/10.22190/FUMB230122002D

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)