DEGRADATION OF REACTIVE ORANGE 16 USING A PROTOTYPE ATMOSPHERIC-PRESSURE NON-THERMAL PLASMA REACTOR
Abstract
A prototype atmospheric pressure non-thermal corona plasma reactor system is developed and tested for the removal of commercial textile reactive dye from water. The dye can be completely degraded in water by the presented reactor system in the initial concentration range of 10-100 mg dm-3. Dye degradation rate decreases with the increase of initial dye concentration and pulse frequency. The pH of treated solutions decreases with the increase of treatment time and with the decrease of the applied frequency. Solutions electrical conductivity increases with an increase of treatment time and with the decrease of the applied frequency. The decolorization reactions follow the pseudo-first kinetics order. The changes in the treated dye solutions compositions are the consequences of injection of plasma generated reactive species from gas into the liquid through the interfacial zone.
HIGHLIGHTS
- Atmospheric pressure non-thermal plasma reactor is developed for organics degradation use
- Textile reactive dye was completely decolorized in the tested initial dye concentration range
- Degradation rate decreases with the increase of initial concentration and applied reactor frequency
- Degradation kinetics follows the pseudo-first-order model
- The increase of reaction time and applied frequency cause the decrease of pH and increase of electrical conductivity
Keywords
Full Text:
PDFReferences
Bansode, A., More, S.E., Siddiqui, E., A., Satpute, S., Ahmad, A., Bhoraskar, S.V., Mathe, V., L., 2017, Chemosphere 167, 396-405, DOI:10.1016/j.chemosphere.2016.09.089
Barthakur, N., 1990. Desalanisation, 78, 455-465.
Bobkova, E., Smirnov, S., Zalipaeva, Y., Rybkin, V., 2014. Plasma Chem. Plasma Process, 34, 721-743.
Bruggeman et al., 2016. Plasma Sources Sci. Technol, 25, 053002. doi:10.1088/0963-0252/25/5/053002
Bruggeman P., Van Slycken, J., Degroote, J., Vierendeels, J., Verleysen, P., Leys, C., 2008. Plasma Sci. 36, 1138-1139.
Bruggeman, P., Graham, L., Degroote, J., Vierendeels, J., Leys, C., 2007. J. Phys. D: Appl. Phys. 40, 4779-4786.
Bruggeman, P., Guns, P., Degroote, J., Vierendeels, J., Leys, C., 2008. Plasma Sources Sci. Technol. 17, 045014.
Bruggeman, P., Leys, C., 2009, J. Phys. D: Appl. Phys. 42, 053001 1-28 doi:10.1088/0022-3727/42/5/053001
Bruggeman, P., Ribezl, E., Degroote, J., Vierendeels, J., Leys, C., 2008b. J. Optoelectron. Adv. Mater. 10, 1964–7. 000257962500014
Bugaenko, V., Byakov, V., 1998. High Energy Chem, 365-371.
Chandana, L., Manoj, P., Kumar, R., Subrahmanyam, C., 2015, Chem. Eng. J. 282, 116-122. doi.org/10.1016/j.cej.2015.02.027
Chandana, L., Subrahmanyam, Ch., 2016. J. Env. Chem. Eng., doi.org/10.1016/j.jece.2016.11.014
Chen, J., Du, Y., Shen, Z., Lu, S., Su, K., Yuan, S., Hu, Z,. Zhang, A., Feng, J., 2017. Sep. Purif. Technol. 179, 135-144.
García, M., Mor, M., Esquivel, D., Foster, J., Rodero, J., Jimenez-Sanchidri, E., Romero-Salguero, F., 2017. Chemosphere, 180, 239-246. doi.org/10.1016/j.chemosphere.2017.03.126
Hentita, H., Ghezzarb, M., Womesc, M., Jumas, J., Addou, A., Ouali, M., 2014. J. Mol.Catal. A: Chem, 390, 37-44. doi.org/10.1016/j.molcata.2014.03.003
Jablonowski, H., Bussiahn, R., Hammer, M., Weltmann, D., von Woedtke, T., Reuter, S., 2014. Phys. Plasmas, 22, 122008.
Jiang, B., Zheng, J., Liu, Q., Wu, M., 2012. Chem. Eng. J, 204, 32-39, doi.org/10.1016/j.cej.2012.07.088
Lewis, T., 2003. Trans. Dielectr. Electr. Insul. 10, 948-955.
Locke, B., Sato, M., Sunka, P, Hoffmann, M., 2006. Eng. Chem. Res. 45, 882-905 DOI: 10.1021/ie050981u
Magureanu M., Piroi D., Gherendi, F., Mandache, N., Parvulescu, V., 2008. Plasma Chem. Plasma Process, 28, 677-688.
Martı´nez-Huitle, C.A., Brillas, E., 2009. Appl. Catal. B, 87, 105-145, doi:10.1016/j.apcatb.2008.09.017
Mitrović, J., Radović, M., Bojić, D., Anđelković, T., Purenović, M., Bojić, A., 2012. J. Serb. Chem. Soc. 77, 465-481. doi: 10.2298/JSC110216187M
Nijdam, S., Van Veldhuizen, E., Bruggeman, P., Ebert U., 2012. An introduction to nonequilibrium plasmas at atmospheric temperature in: V.I. Parvulescu, M. Magureanu, P. Lukes (Eds.), Plasma Chemistry and Catalysis in Gases and Liquids, Wiley, NY, 1-44.
Petrović, M., Mitrović, J., Antonijević, M., Matović, B., Bojić, D., Bojić, A., 2015, Mat. Chem. Phys, 158, 31-37, doi.org/10.1016/j.matchemphys.2015.03.030
Raizer, Y.,1991. Gas Discharge Physics, Springer, Berlin.
Shang, K., Wan, X., Li, J., Wang, H., Lu, N., Jiang, N., Wu, Y., 2017. Chem. Eng. J. 311, 378-384.
doi.org/10.1016/j.seppur.2017.02.007
Simonenko, E., Gomonov, A., Rolle, N., Molodkina, L., 2015. Procedia Engineering, 117, 337-344. doi.org/10.1016/j.proeng.2015.08.170
Sun, Q., Yang, L., 2003. Water Res. 37, 1535-1544, DOI: 10.1016/S0043-1354(02)00520-1
Tichonovasa, M., Krugly, E., Racys, V., Hippler, R., Kauneliene, V., Stasiulaitiene, I., Martuzevicius, D., 2013, Chem. Eng. J. 229, 9-19.
Refbacks
- There are currently no refbacks.
ISSN 0354-4656 (print)
ISSN 2406-0879 (online)