STRUCTURAL AND OPTICAL CHARACTERIZATION OF ALUMINUM ZINC CO-DOPED TIN OXIDE GROWN BY SOL-GEL SPIN COATING TECHNIQUES
Abstract
Aluminum Zinc co-doped Tin Oxide (AZSO) thin film was grown by sol-gel spin coating techniques onto a glass substrate using various doping concentrations (0, 2, 4, 6, and 8 wt%) and the effect of doping on each sample were studied using structural analysis; X-ray Diffraction (XRD) pattern, gravimetric method; thin film thickness and UV photo-spectrometer; optical properties. The results of the XRD were revealed that all the peaks have a tetragonal phase of SnO2, which were oriented at the 110, 101, and 211 planes. The film thickness was observed to vary with doping concentration. In the visible region, all the film samples were exhibited at average transmittance. The coefficient of absorption was gradually increased with an increase in photon energy at a certain level with a decrease in the absorption coefficient as the photon energy increases further. At 550-800 nm range of wavelength, a high extinction coefficient (k) was recorded and the refractive index curves show regular dispersion behavior. The optical conductivity of the films followed a similar pattern, which showed that conductivity increased to a peak at 3.60 eV. The energy bandgap of the film samples (AZSO1 - AZSO5) is 4.095 eV, 4.103 eV, 4.087 eV, 4.114 eV, and 4.106 eV, respectively. The studies show that the properties of Al-Zn co-doped SnO2 films can be explored for optoelectronic applications.
Keywords
Full Text:
PDFReferences
Al-dujayli, S. M. A., Al – Tememee, N. A., Mohamed, G. H., Chiad, B. T., Kadhim, F. J. and Rahman, B. A., 2013. Int. J. Adv. Res. Eng. Tech., 4, 38–49.
Andreas, S., 2012. Mater., 5, 661-683. doi: 10.3390/ma5040661
Ayllon, J. A. and Lira-Cantu, M., 2009. Appl. Phys. A, 95, 249-255. https://doi.org/10.1007/s00339-008-5023-z
Batzill, M. and Diebold, U., 2005. Progr. Surf. Sci., 79, 47–154. https://doi.org/10.1016/j.progsurf.2005.09.002
Bhat, J. S., Maddani, K. I., Karguppikar, A. M. and Ganesh, S., 2007. Nucl. Instr. Meth. Phys. Res. B, 258, 369–374. https://doi.org/10.1016/j.nimb.2007.02.074
Bolzan, A. A, Fong, C., Kennedy, B. J. and Howard, C. J., 1997. Acta Crystal. B53, 373-380.
https://doi.org/10.1107/S0108768197001468
Doyan, A., Susilawati, Ikraman, N. and Taufik, M., 2013. J. Phys. Conf. Ser., 1011, 1-6.
DOI: 10.1088/1742-6596/1011/1/012015
Granato, B. D., Caraveo-Frescas, J. A., Alshareef, H. N. and Schwingenschlogl, U., 2013. Appl. Phys. Lett., 102, 212105. https://doi.org/10.1063/1.4808382
Guo, W., Zhang, Fu. L., Zhang, Y., Liang, L.Y., Liu, Z. M., Cao, H. T. and Pan, X. Q., 2010. Appl. Phys. Lett., 96, 042113. https://doi.org/10.1063/1.3277153
Haridas, D., Sreenivas, K. and Gupta, V., 2008. Sens. Actu.: B. Chem., 133, 270–275. https://doi.org/10.1016/j.snb.2008.02.030
Kocman, V. and Nufield, E. W., 1973. Acta Crystal. B29., 2528-535. https://doi.org/10.1107/S0567740873006953
Kim, M-G., Kanatzidis, M. G., Facchetti, A. and Marks, T. J., 2011. Nat. Mater., 10, 382-388. https://doi.org/10.1038/nmat3011
Liu, X., Zhang, D., Zhang, Y. and Dai, X., 2010. J. Appl. Phys., 107, 064309. https://doi.org/10.1063/1.3354092
Ruby D. and Suman P., 2011. Int. J. Mater. Sci., 1, 35-40.
Sahay, P. P., Nath, R. K. and Tewari, S., 2007. Cryst. Res. Tech., 42, 275-280. https://doi.org/10.1002/crat.200610895
Sharipah, N. S., Azlan, Z., Mahesh, K. T., Nurul, S. S. and Hashim, U. 2012. In 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia.
Sriram, S. and Thayumanavan, A., 2013. Inter J. ChemTech Res., 5, 2204-2209.
Yakuphanoglua, F., Viswanathan, C., Peranantham, P. and Soundarrajan, D., 2009. J. Opto. Adv. Mater., 1, 945-949.
Xu, J. M., Li, L., Wang, S., Ding, H. L., Zhang, Y. X. and Li, G. H., 2013. CrystEnggComm., 15, 3296-3300. https://doi.org/10.1039/C3CE40241J
Refbacks
- There are currently no refbacks.
ISSN 0354-4656 (print)
ISSN 2406-0879 (online)