ORGANIC THIOCYANATES - GLUCOSINOLATE ENZYMATIC DEGRADATION PRODUCTS OR ARTEFACTS OF THE ISOLATION PROCEDURE?

Milica Todorovska Rašić, Niko Radulović

DOI Number
https://doi.org/10.2298/FUPCT2002077T
First page
077
Last page
087

Abstract


Glucosinolates are abundant in plants of the order Brassicales, and they are degraded by myrosinases into various organic breakdown products: isothiocyanates, thiocyanates, nitriles, etc., depending on their structure, conditions of hydrolysis, the presence of certain protein cofactors. Their most common hydrolysis products are isothiocyanates, while simple nitriles, epithionitriles, and thiocyanates are produced occasionally. Organic thiocyanates are described from a very limited number of Brassicales taxa. Up to now benzyl, (4-hydroxyphenyl)methyl, (4-methoxyphenyl)methyl, 4-methylthiobutyl, and allyl thiocyanates were reported as products of glucosinolates autolysis. The present review summarizes the knowledge on the mechanism of organic thiocyanate formation from the corresponding thioglucosides. The enzymatic formation of organic thiocyanates is believed to be enabled by thiocyanate-forming protein (TFP), but they could be formed via metabolic routes that do not involve TFP. All of the reported thiocyanates are produced from stable (carbo)cationic species that allow an isomerization of an isothiocyanate to thiocyanate, and vice versa. Although the possibility that thiocyanates can be biosynthesized in plats under certain conditions cannot be dismissed, allyl thiocyanate can be a thermal isomerization artefact of the original isothiocyanate that is formed in the heated zones of the gas chromatograph, while other thiocyanates could form in an aqueous medium via heterolytic dissociation to ambident nucleophilic SCN- and its recapture. One should always be aware of this analytical shortcoming when concluding on the presence and quantity of these specific (iso)thiocyanantes in the analyzed sample.

Keywords

organic thiocyanate, glucosinolate, thiocyanate-forming protein, isomerization

Full Text:

PDF

References


Al-Shehbaz, I.A., Beilstein, M.A., Kellogg, E.A., 2006. Pl. Syst. Evol. 259, 89–120. doi:10.1007/s00606-006-0415-z

Benn, M., Singh, V. K., 1986. Can. J. Chem. 64, 940–942. doi:10.1139/v86-156

Blažević, I., Montaut, S., Burčul, F., Olsen, C. E., Burow, M., Rollin, P., Agerbirk, N., 2020. Phytochemistry, 169, 112100. doi:10.1016/j.phytochem.2019.112100

Bones, A.M., Rossiter, J.T., 1996. Physiol. Plant., 97, 194–208. doi:10.1111/j.1399-3054.1996.tb00497.x

Burow, M., Bergner, A., Gershenzon, J., 2007. Plant Mol. Biol., 63, 49–61. doi: 10.1007/s11103-006-9071-5

Castanheiro, T., Suffert, J., Donnard, M. Gulea, M., 2016. Chem. Soc. Rev., 45, 494–505. doi:10.1039/C5CS00532A

Chew, F.S., 1988. Biological effects of glucosinolates, in: Cutler, H.G. (Ed.), Biologically active natural products: Potential use in agriculture. American Chemical Society, Washington, D.C., pp. 155–181.

Cole, R., 1976. Phytochemistry, 15, 759–762. doi:10.1016/S0031-9422(00)94437-6

Conaway, C.C., Yang, Y.M., Chung, F.L., 2002. Curr. Drug Metab., 3, 233–255. doi: 10.2174/1389200023337496

Daxenbichler, M.E., VanEtten, C.H., Wolff, I.A., 1968. Phytochemistry, 7, 989–996. doi: 10.1016/S0031-9422(00)82186-X

Dekić, M., 2011. PhD Thesis. Faculty of Science and Mathematics, University of Niš.

Dekić, M.S., Radulović, N.S., Stojanović, N.M., Randjelović, P.J., Stojanović-Radić, Z.Z., Najman, S., Stojanović, S., 2017. Food Chem., 232, 329–339. doi:10.1016/j.foodchem.2017.03.150

Drobnica, L., Kristian, P., Augustin, J., 1977. The chemistry of the -NCS group: Part 2, in: Patai, S. (Ed.), The Chemistry of Cyanates and Their Thio Derivatives. Wiley, Chichester, UK, pp 1003–1221.

Ettlinger, M, Dateo, G.P., Harrison, B., et al., 1961, Proc. Natl. Acad. Sci., 47, 1875–1880. doi: 10.1073/pnas.47.12.1875

Fahey, J.W., Zalcmann, A.T., Talalay, P., 2001. Phytochemistry, 56, 5–51. doi:10.1016/s0031-9422(00)00316-2

Fava, A., Iliceto, A., Bresadola, S., 1965. J. Am. Chem. Soc., 87, 4791–4794. doi:10.1021/ja00949a023

Fava, A. 1966. Isomerization of organic thiocyanates, in: Kharasch, N., Meyers, C.Y. (Eds.), The Chemistry of Organic Sulfur Compounds. Pergamon, Oxford, UK, pp. 73–91.

Gil, V., MacLeod, A.J., 1980. Phytochemistry, 19, 2547–2551. doi:10.1016/S0031-9422(00)83916-3

Gilbert, J., Nursten, H.E., 1972. J. Sci. Food Agric., 23, 527–539. doi:10.1002/jsfa.2740230414

Gmelin, R., Virtanen, A.I., 1959. Acta Chem. Scand. 13, 1474–1475. doi:10.3891/acta.chem.scand.13-1474

Halkier, B.A., Gershenzon J., 2006. Annu. Rev. Plant Biol, 57, 303–333. doi:10.1146/annurev.arplant.57.032905.105228

Hasapis, X., MacLeod, A. J., 1982. Phytochemistry, 21, 559–563. doi:10.1016/0031-9422(82)83140-3

Kirk, J.T.O., MacDonald, C.G., 1974. Phytochemistry, 13, 2611–2615. doi:10.1016/S0031-9422(00)86946-0

Kjaer, A., Olesen L.P., 1976. in: Geissman, T.A. (Ed.), Specialist Periodical Reports. The Chemical Society, London, 179–200.

Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D.J., Gershenzon, J. 2001. Plant Cell, 13, 2793–2807. doi:10.1105/tpc.010261

Lex, A., Trimmel, G., Kern, W., Stelzer, F., 2006. J. Mol. Catal. A-Chem., 254, 174–179. doi:10.1016/j.molcata.2006.03.024

Lee, J., Kwon H., 2014. J. Sci. Food Agric., 95, 2244–2251. doi:10.1002/jsfa.6943

Louda, S., Mole, S., 1991. Glucosinolates: Chemistry and ecology, in: Rosenthal, G.A., Berenbaum, M.R. (Eds.), Herbivores: Their Interactions With Secondary Plant Metabolites, Vol. I: The Chemical Participants, 2nd ed. Academic Press, San Diego, CA, USA, pp. 123–164.

Luthy, J., Benn, M.H., 1977. Can. J. Biochem., 55, 1028–1031. doi:10.1139/o77-153

Matusheski, N.V., Swarup, R., Juvik, J.A., Mithen, R., Bennett, M., Jeffery, E.H., 2006. J. Agric. Food Chem., 54, 2069–2076. doi:10.1021/jf0525277

Miller, 1965. M.A Thesis. Rice University, Houston, TX, USA.

Montaut, S., De Nicola, G.R., Agnaniet, H., Issembe, Y., Rollin, P., Menut, C., 2017. Nat. Prod. Res. 31, 308–313. doi:10.1080/14786419.2016.1236099

Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J., 2000. Plant Mol. Biol. 42, 93–114. doi:10.1023/A:1006380021658

Saarivirta, M., Virtanen, A.I., 1963. Acta Chem. Scand, 17(supl.), 74–78. doi:10.3891/acta.chem.scand.17s-0074

Schlutter, M., Gmelin, R., 1972. Phytochemistry, 11, 3427–3431. doi:10.1016/S0031-9422(00)89832-5

Shinohara, A., Sato, A., lshii, H., Onda, N., 1991. Chromatographia, 32, 357–364. doi:10.1007/BF02321434

Smith, P.A.S., Emerson, D. W., 1960. J. Am. Chem. Soc., 82, 3076–3082. doi:10.1021/ja01497a025

Slater, G.P., 1992. Chromatographia 34, 461–467. doi:10.1007/BF02290237

Virtanen, A.I., 1965. Phytochemistry, 4, 207–228. doi:10.1016/S0031-9422(00)86168-3

Wittstock, U., Burow, M. 2010. Arabidopsis Book, 8, e0134. doi:10.1199/tab.0134


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)