THE EFFECTS OF DISCOVERY-BASED LEARNING OF DIFFERENTIATED ALGEBRA CONTENT ON THE LONG-TERM KNOWLEDGE OF STUDENTS IN EARLY MATHEMATICS EDUCATION

Sanja Anđelković, Sanja Maričić

DOI Number
https://doi.org/10.22190/FUTLTE230611024A
First page
251
Last page
263

Abstract


One of the essential characteristics of knowledge that determines its quality is its durability. The durability of students' knowledge depends, among other things, on the quality of organization and implementation of teaching in the process of acquiring new knowledge, as well as reviewing and repeating old knowledge. More specifically, the durability of students' knowledge depends on the applied methodological approach and the students' activities in the classroom. The aim of this study was to examine the effects of discovery-based learning on differentiated algebra content on the long-term knowledge of students in early mathematics education. To achieve this goal, an experiment was conducted with parallel groups consisting of a sample of 261 fourth-grade students from primary schools. The experiment aimed to investigate whether the methodological approach to algebra instruction based on the principles of discovery learning and content differentiation yields better effects on the durability of students' knowledge compared to traditional learning methods. The results of the research showed that discovery-based learning on differentiated algebra content contributes to better knowledge durability overall and at each of the three achievement levels (basic, intermediate, and advanced).

Keywords

knowledge durability, algebra instruction, discovery-based learning, content differentiation

Full Text:

PDF

References


Balim, A., G. (2009). The Effects of Discovery Learning on Students’ Success and Inquiry Learning Skills. Eurasian Journal of Educational Research, 35, 1-20.

Bognar, L., i Matijević, M. (2002). Didaktika. Zagreb: Školska knjiga.

Brizuela, B. M., & Schliemann, A. D. (2003). Fourth Graders Solving Equations. International Group for the Psychology of Mathematics Education, 2, 137-144. https://files.eric.ed.gov/fulltext/ED500917.pdf

Blanton, L. M., and Kaput, J. J. (2011). Functional Thinking as a Route Into Algebra in the Elementary Grades. In: Ј. Chai, & E. Knuth (Eds.): Early Algebraization, Advances in Mathematics Education (pp. 5-23). Berlin: Springer.

Blanco, L. J., & Garrote, M. (2007). Difficulities in learning inequalities in students of the first year of pre-university education in Spain. Eurasia Journal of Mathematics Science and Technology Education, 3, 221-229. https://www.ejmste.com/download/difficulties-in-learning-inequalitiesin-students-of-the-first-year-ofpre-university-education-in-4070.pdf

Carracher, W. D., Schliemann, D. A., Brizuela, M. B., & Earnest, D. (2006). Arithmetic and Algebra in Early Mathematics Education. Journal for Research in Mathematics Education, 37(2), 87-115. https://www.researchgate.net/publication/298917525_Arithmetic_and_algebra_in_early_mathematics_education

Carraher, D. W., Schliemann, A. D., & Brizuela, B. (2000). Early algebra, early arithmetic: Treating operations as functions. Plenary address presented at the Twenty-second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson: Arizona.

Carraher, D. W., Schliemann, A. D., & Schwartz, J. (2008). Early algebra is not the same as algebra early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the Early Grades. (235‒272). Mahwah, NJ: Lawrence Erlbaum Associates/Taylor & Francis Group and National Council of Teachers of Mathematics.

Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.

Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the learning of mathematics, 9(2), 19–25.

Garelick, B. (2009). Discovery learning in math: Exercises versus problems. Nonpartisan Education Review / Essays, 5(2), 1-17. https://nonpartisaneducation.org/Review/Essays/v5n2.htm

Gazibara, S. (2018). Constructivist active learning environments from the students’perspective. In 5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2018 (pp. 183-190). Bulgaria: Albena. https://www.researchgate.net/publication/327797978_Constructivist_Active_Learning_Environments_from_the_Students'_Perspective

Hammer, D. (1997). Discovery learning and discovery teaching. Cognition and instruction,15 (4), 485–529.

Јанковић, С. (2016). Индивидуализација наставе математике применом проблемске наставе. Методичка пракса, 13(3-4), 269-282.

Kalathaki, M. (2015). Evaluation Tool for the Application of Discovery Teaching Method in the Greek Environmental School Projects. World Journal of Education, 5(2), 40-51. https://files.eric.ed.gov/fulltext/EJ1158417.pdf

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317-326.

Kieran, C. (2004). The Equation / Inequality Connection in Constructing Meaning for Inequality Situations. In M. J. Høines, A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 143–147). Bergen: Bergen University College.

Kistian, A., Armanto, D., & Sudrajat, A. (2017). The Effect Of Discovery Learning Method On The Math Learning Of The V Sdn 18 Students Of Banda Aceh, Indonesia. British Journal of Education, 5(11), 1-11. http://www.eajournals.org/wp-content/uploads/The-Effect-of-Discovery-Learning-Method-on-the-Math-Learning-of-the-V-Sdn-18-Students-of-Banda-Aceh-Indonesia.pdf

Knuth, E., Stephens, A., McNeil, N., & Alibali, M. W. (2006). Does Understanding the Equal Sign Matter? Evidence from Solving Equations. Journal for Research in Mathematics Education, 37(4), 297-312. https://www.researchgate.net/publication/234007126_Does_understanding_the_equal_sign_matter_Evidence_from_solving_equations

Küchemann, D. (1978). Children's understanding of numerical variables. Mathematics in school, 7(4), 23-26.

Маричић, С., и Милинковић, Н. (2015). Диференцирана настава и ученици потенцијално даровити за математику. У А. Михајловић (ур.), Зборник радова са III међународног научног скупа Методички основи наставе математике III (pp. 61-74). Јагодина: Педагошки факултет.

Малешевић, Д. (2011). Моделовање садржаја наставе математике за учење откривањем у разредној настави [Необјављена докторска дисертација]. Врање: Учитељски факултет у Врању.

Малешевић, Д. (2003). Утицај учења откривањем на развој продуктивног мишљења ученика у почетној настави математике [Необјављена магистарска теза]. Врање: Учитељски факултет у Врању.

Mirkov, S. (2011). Konstruktivistička paradigma i obrazovanje za društvo znanja: progresivni diskurs u nastavi. U TEHNOLOGIJA, INFORMATIKA I OBRAZOVANJE ZA DRUŠTVO UČENJA I ZNANJA. 6. međunarodni simpozijum, (pp. 3-5). Čačak: Tehnički fakultet. http://www.ftn.kg.ac.rs/konferencije/tio6/radovi/2)%20Pedagoske%20dimenzije%20drustva%20ucenja%20i%20znanja/PDF/201%20Snezana%20Mirkov.pdf

Миловановић, Ј. Б. (2008). Математички задаци с обележјем стандарда као модели индивидуализоване и диференциране наставе математике. Настава и васпитање, 57(4), 469-482. https://www.pedagog.rs/2008/05/26/matematicki-zadaci-s-obelezjem-standarda-kao-modeli-individualizovane-i-diferencirane-nastave-matematike/?_rstr_nocache=rstr4126484f6b67ce5f

Minner, D., Levy, A. J., & Century, J. (2010). Inquiry-Based Science Instruction:What Is It and Does It Matter?. Journal of Research in Science Teaching, 47(4), 474-496.

Правилник о образовним стандардима за крај првог циклуса обавезног образовања за предмете српски језик, математика и природа и друштво (2011). Просветни гласник, Службени гласник РС, бр. 5/2011.

Sfard, A., & Linchevski, L. (1994). Between arithmetic and algebra: In the search of a missing link the case of equations and inequalities. Rendiconti Del Seminario Matematico, 52(3), 279-307. http://www.seminariomatematico.polito.it/rendiconti/cartaceo/52-3/279.pdf

Stevanović, M. (2002). Škola i stvaralaštvo. Labin: MediaDesign.

Stacey, K., & MacGregor, M. (1999). Learning the algebraic method of solving problems. The Journal of Mathematical Behavior, 18(2), 149–167.

Trnavac, N., i Đorđević, J. (1998). Pedagogija. Beograd: Naučna knjiga komerc.

Вуковић, В. (1998). Савремено учење математике. Јагодина: Учитељски факултет у Јагодини и Студио СЦ Јагодина.

Вуловић, Н. (2011). Примена метода активног учења на диференцираним садржајима геометрије у почетној настави математике [Необјављена докторска дисертација]. Јагодина: Педагошки факултет у Јагодини.

Vučić, L. (1991). Pedagoška psihologija-Učenje. Beograd: Centar za primenjenu psihologiju Društva psihologa Srbije.

Vergnaud, G. (1985). Understanding mathematics at the secondary-school level. In A. Bell, B. Low, & J. Kilpatrick (Eds.), Theory, Research & Practice in Mathematical Education (pp. 27-45). University of Nottingham, UK: Shell Center for Mathematical Education.

Зељић, М. (2014). Методички аспекти ране алгебре. Београд: Учитељски факултет.




DOI: https://doi.org/10.22190/FUTLTE230611024A

Refbacks

  • There are currently no refbacks.


ISSN 2560 – 4600 (Print)
ISSN 2560 – 4619 (Online)