ARTIFICIAL INTELLIGENCE APPLICATION IN PHOTOACOUSTIC OF GASES

Mladena Lukić, Žarko Ćojbašić, Dragan D. Markushev

DOI Number
https://doi.org/10.22190/FUWLEP2301031L
First page
031
Last page
044

Abstract


Photoacoustic spectroscopy is a powerful, non-destructive, ultrasensitive technique that covers a wide range of applications including atmospheric monitoring, industrial, environmental, and biomedical practice. In this paper, our attention is focused on the area of artificial intelligence implementation in photoacoustic spectroscopy of gases. Artificial intelligence has been proven as a very successful, effective, and promising method for the accurate and real-time determination of photoacoustic signal parameters, related to relaxation, thermal and other physical properties of various media (i.e., for solving the inverse photoacoustic problem). To improve the sensitivity and selectivity of the photoacoustic method feedforward multilayer perceptron network is applied for real-time simultaneous determination of photoacoustic signal parameters: vibrational-to-translational relaxation time, and radius of the laser beam. Also, to solve the problem of finding optimal values of these photoacoustic parameters, metaheuristic algorithms, genetic algorithms and simulated annealing are used. The performance of artificial intelligence methods has been tested on a set of experimental signals generated in the (SF6+Ar) gas. The potential advantages and disadvantages of those methods are discussed.

Keywords

photoacoustic spectroscopy, artificial neural network, vibration to translation relaxation time, laser beam radius, genetic algorithms, simulated annealing

Full Text:

PDF

References


L. B. Kreuzer and C. K. N. Patel, Nitric Oxide Air Pollution: Detection by Optoacoustic Spectroscopy, Science, 173 (3991), 45-47 (1971). DOI: 10.1126/science.173.3991.45.

M. Bertolotti, R. L. Voti, A note on the history of photoacoustic, thermal lensing, and photothermal deflection technique, Journal of Applied Physics, 128, 230901, (2020). DOI: 10.1063/5.0023836.

M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wachter, Trace gas monitoring with infrared laser-based detection schemes, Applied Physics B, 90, 289–300 (2008). DOI: 10.1007/s00340-007-2875-4

T. Tomberg, M. Vainio, T. Hieta, L. Halonen, Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy, Scientific Reports 8, 1848, (2018). DOI:10.1038/s41598-018-20087-9

L. Xionga, W. Baia, F. Chenb, X. Zhao, F. Yu, G.J. Diebold, Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating, The Proceedings of the National Academy of Sciences. 114, 7246-7249 (2017). DOI:10.1073/pnas.170604011

R. Anufriev, C. Glorieux, G. Diebold, Advances in photothermal and photoacoustic metrology, Journal of Applied Physics 128, 240402 (2020). DOI:10.1063/5.0039077

Z. Bozoki, A. Pogany, G. Szabo, Photoacoustic Instruments for Practical Applications: Present, Potentials, and Future Challenges, Applied Spectroscopy Reviews, 46, 1–37 (2011). DOI: 10.1080/05704928.2010.520178

F. Wang, Y. Cheng, Q. Xue, Q. Wang, R. Liang, J. Wu, J. Sun, C. Zhu, Q. Li, Techniques to enhance the photoacoustic signal for trace gas sensing: A review, Sensors and Actuators A: Physical, 345, 113807 (2022). DOI:10.1016/j.sna.2022.113807

A. Sampaolo, P. Patimisco, M. Giglio, A. Zifarelli, H. Wu, L. Dong, V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: A review, Analytica Chimica Acta, 1202, 338894 (2022). DOI:10.1016/j.aca.2021.338894

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, F. K. Tittel, Beat Frequency Quartz-Enhanced Photoacoustic Spectroscopy for Fast and Calibration-Free Continuous Trace-Gas Monitoring, Nature Communications, 8, 15331 (2017). DOI:10.1038/ncomms15331

K. Wilcken, J. Kauppinen, Optimization of a Microphone for Photoacoustic Spectroscopy, Applied Spectroscopy, 57, 1087–1092 (2003). DOI:10.1366/00037020360695946

J. Peltola, T. Hieta, M. Vainio, Parts-per-Trillion-Level Detection of Nitrogen Dioxide by Cantilever-Enhanced Photo-Acoustic Spectroscopy, Optics Letters, 40, 2933–2936 (2015) DOI:10.1364/OL.40.002933.

M. Lukić, Ž. Ćojbašić, M. D. Rabasović, D. D. Markushev, Computationally intelligent pulsed photoacoustics, Measurement Science and Technology 25, 125203 (2014). DOI:10.1088/0957-0233/25/12/125203.

M. Lukić, Ž. Ćojbašić, D. D. Markushev, Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization, Optical and Quantum Electronics 54, 674. (2022). DOI:10.1007/s11082-022-04059-y.

К. Lj. Djordjević, S. P. Galović, M. N. Popović, M.V. Nešić, I. P. Stanimirović, Z. I. Stanimirović, D. D. Markushev, Use Neural Network in Photoacoustic Measurement of Thermoelastic Properties of Aluminum foil, Measurement 199, 111537 (2022). DOI: 10.1016/j.measurement.2022.111537.

К. Lj. Djordjević, M. I. Jordović-Pavlović, Ž.M. Ćojbašić, S. P. Galović, M. N. Popović, M. V. Nešić, D. D. Markushev, Influence of data scaling and normalization on overall neural network performances in photoacoustics, Optical and Quantum Electronics, 54, 501 (2022). DOI:10.1007/s11082-022-03799-1

M. Nesic, M. Popovic, S. Galovic, Developing the Techniques for Solving the Inverse Problem in Photoacoustics. Atoms. 7, 24 (2019) DOI:10.3390/atoms7010024.

A. Hauptmann, B. T. Cox, Deep learning in photoacoustic tomography: current approaches and future directions, Journal of Biomedical Optics, 25, 112903 (2020). DOI:10.1117/1.JBO.25.11.112903

K. M. Beck, R. J. Gordon, The vibrational relaxation of highly excited SF6 by Ar, Chemical Physics, 87, 5681 (1987). DOI:10.1063/1.453736.

K. M. Beck, R. J. Gordon, Theory and application of time‐resolved optoacoustics in gases, The Journal of Chemical Physics, 89, 5560 (1988). DOI:10.1063/1.455562.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, Short time - scale effects in the pulsed source thermal lens, Molecular Physics 48, 81-95 (1983). DOI:10.1080/00268978300100061.

J. Gajević, M. Stević, J. Nikolić, M. Rabasović, D. Markushev: Global warming and SF6 molecule, Facta Universitatis, Series: Physics, Chemistry and Technology, 4, 57 – 69 (2006). DOI:10.2298/FUPCT0601057G.

M. D. Rabasović, D. D. Markushev, J. Jovanović-Kurepa, Pulsed photoacoustic system calibration for highly excited molecules, Meas. Sci. Technol. 17, 1826-1837 (2006). DOI:10.1088/0957-0233/17/7/022.

M. D. Rabasović, J. D. Nikolić, D. D. Markushev Pulsed photoacoustic system calibration for highly excited molecules: II. Influence of the laser beam profile and the excitation energy decay. Measurement Science and Technology, 17, 2938-2944 (2006). DOI:10.1088/0957-0233/17/11/011.

S. D. Russo, A. Sampaolo, P. Patimisco, G. Menduni, M. Giglio, C. Hoelzl, V. M.N. Passaro, H. Wu, L. Dong, V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species, Photoacoustics, 21, 100227 (2021). DOI: 10.1016/j.pacs.2020.100227.

M. D. Rabasović, J. D. Nikolić, D. D. Markushev, Simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time by pulsed photoacoustics, Applied Physics B, 88, 309-315 (2007). DOI:10.1007/s00340-007-2697-4.

M. D Rabasović, D. D. Markushev, Laser beam spatial profile determination by pulsed photoacoustics: exact solution, Measurement Science and Technology, 21, 065603 (2010). DOI:10.1088/0957-0233/21/6/065603.

S. Mallidi, S. Emelianov, Photoacoustic technique to measure beam profile of pulsed laser systems, Review of Scientific Instruments, 80, 054901-1-054901-5 (2009). DOI:10.1063/1.3125625.

L. Lamaignère, R. Courchinoux, N. Roquin, R. Parreault, T. Donval, Laser-induced damage of high power systems: phenomenology and mechanisms Proc. SPIE 11063, Pacific Rim Laser Damage: Optical Materials for High-Power Lasers 1106309, (2019). DOI:10.1117/12.2537106.

M. Lukić, Ž. Ćojbašić, D. Markushev: Simulated Annealing Optimization for Inverse Problem Solving of Trace Gasses Detection by Infrared Pulsed Photoacoustic, Proceedings of 15 International conference on applied electromagnetics, ПЕС 2021, 121-124, (2021), Niš, Serbia ISBN:978-86-6125-241-9.

K.L. Du, M.N.S. Swamy, Neural Networks and Statistical Learning, Springer-Verlag London 2014.

A.P. Engelbrecht, Computational Intelligence, 2nd edition. John Wiley and Sons 2007.

M. Lukić, Ž. Ćojbasić, M. Rabasović, D. Markushev, D. Todorović, Computational intelligence based simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time by pulsed photoacoustics, Facta Universitatis, Series: Physics, Chemistry and Technology 10, 1-12 (2012). DOI: 10.2298/FUPCT1201001L.

M.Lukić, Ž. Ćojbasić, M. Rabasović, D. Markushev, D. Todorović: Genetic algorithms application for the photoacoustic signal temporal shape analysis and energy density spatial distribution calculation, International Journal of Thermophysics, 34, 1466-1472 (2013). DOI 10.1007/s10765-013-1529-5.

M. Lukić, Ž. Ćojbasić, M. Rabasović, D. Markushev, D. Todorović, Neural Networks-Based Real-Time Determination of the Laser Beam Spatial Profile and Vibrational-to-Translational Relaxation Time Within Pulsed Photoacoustics, Int J Thermophys 34:1795–1802 (2013) DOI: 10.1007/s10765-013-1507-y

J.D. Lambert, Vibrational and Rotational Relaxation in Gases, Oxford University Press (1977).

M. Lukić, Ž. Ćojbašić, D. Markushev, Machine learning based determination of photoacoustic signal parameters for different gas mixtures, Book of Abstracts, ICPPP21 - International Conference on Photoacoustic and Photothermal Phenomena, 365-366 (2022), Bled, Slovenia, https://heyzine.com/flip-book/ae82c5ef9b.html#page/376

J.H. Holland, Adaptation in natural and artificial systems, MIT Press, Massachusetts, 1992.

D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning. Addison-Wesley

Longman Publishing Co.1989, Boston.

D.T. Pham and D. Karaboga, Intelligent optimisation techniques, Springer-Verlag London, 2000.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing, Science, 220, 671-680 (1983).

K. L. Du, M. N. S. Swamy, Simulated annealing. Search and Optimization by Metaheuristics, Springer International Publishing, 2016, AG Switzerland

E. G. Talbi, Metaheuristics - From design to implementation, John Wiley &Sons, 2009, New Jersey.




DOI: https://doi.org/10.22190/FUWLEP2301031L

Refbacks

  • There are currently no refbacks.


ISSN   0354-804X (Print)

ISSN   2406-0534 (Online)