SPATIAL DISTRIBUTION PATTERNS OF WILD-FIRES INCIDENTS IN SERBIA BASED ON VIIRS 375 M DATA FOR THE PERIOD 2013-2023
Abstract
This research investigates the spatial distribution and clustering patterns of wildland fires in Serbia from January 2013 to December 2023 using data obtained from NASA's Fire Information for Resource Management System (FIRMS). A total of 69,179 fires are mapped using the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m thermal anomalies/active fire product, which offers improved spatial resolution and mapping capabilities. Spatial autocorrelation analysis, particularly Moran's I and Local Moran's I, is applied to assess the degree of clustering in the wildland fire incident dataset. Results indicate significant spatial patterns, highlighting critical areas for fire management and prevention. Municipalities such as Požarevac, Bogatić, Kikinda, Žitište, Sečanj, Šid, Irig, Ruma, and Stara Pazova, identified as HH clusters, should be prioritized for resource allocation. LH clusters, including Grocka, Beočin, and Velika Plana, need integration into regional strategies. Additionally, the persistent HL cluster in Kosjerić indicates an anomaly requiring focused intervention. These insights provide valuable information for targeted fire management strategies and highlight the importance of spatial analysis in understanding wildfire dynamics.
Keywords
Full Text:
PDFReferences
I. Fuentes-Santos, M. F. Marey-Pérez, and W. González-Manteiga, “Forest fire spatial pattern analysis in Galicia (NW Spain),” J. Environ. Manage., vol. 128, pp. 30–42, 2013, doi: https://doi.org/10.1016/j.jenvman.2013.04.020.
N. Fernandez-Anez et al., “Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives,” Air, Soil Water Res., vol. 14, 2021, doi: 10.1177/11786221211028185.
J. luc Dupuy et al., “Climate change impact on future wildfire danger and activity in southern Europe: a review,” Ann. For. Sci., vol. 77, no. 2, 2020, doi: 10.1007/s13595-020-00933-5.
N. Khabarov et al., “Forest fires and adaptation options in Europe,” Reg. Environ. Chang., vol. 16, no. 1, pp. 21–30, 2016, doi: 10.1007/s10113-014-0621-0.
L. Magnusson, C. Prudhomme, F. Di Giuseppe, C. Di Napoli, and F. Pappenberger, “Chapter 2 - Operational multiscale predictions of hazardous events,” in Extreme Weather Forecasting, M. Astitha and E. B. T.-E. W. F. Nikolopoulos, Eds. Elsevier, 2023, pp. 87–129.
E. Chuvieco and J. Salas, “Mapping the spatial distribution of forest fire danger using GIS,” Int. J. Geogr. Inf. Syst., vol. 10, no. 3, pp. 333–345, 1996, doi: 10.1080/02693799608902082.
H. Abedi Gheshlaghi, “Using GIS to Develop a Model for Forest Fire Risk Mapping,” J. Indian Soc. Remote Sens., vol. 47, no. 7, pp. 1173–1185, 2019, doi: 10.1007/s12524-019-00981-z.
“https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms.” .
N. Levin and A. Heimowitz, “Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS,” Remote Sens. Environ., vol. 126, pp. 12–26, 2012, doi: 10.1016/j.rse.2012.08.003.
Salma et al., “Prediction capability of the MCDA-AHP model in wildfire risk zonation of a protected area in the Southern Western Ghats,” Environ. Sustain., vol. 6, no. 1, pp. 59–72, 2023, doi: 10.1007/s42398-022-00259-0.
S. Nikhil et al., “Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India,” J. Geovisualization Spat. Anal., vol. 5, no. 1, p. 14, 2021, doi: 10.1007/s41651-021-00082-x.
F. Sivrikaya and Ö. Küçük, “Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region,” Ecol. Inform., vol. 68, no. November 2021, 2022, doi: 10.1016/j.ecoinf.2021.101537.
M. L. Chas-Amil, J. Touza, and E. García-Martínez, “Forest fires in the wildland-urban interface: A spatial analysis of forest fragmentation and human impacts,” Appl. Geogr., vol. 43, pp. 127–137, 2013, doi: 10.1016/j.apgeog.2013.06.010.
M. H. Nami, A. Jaafari, M. Fallah, and S. Nabiuni, “Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS,” Int. J. Environ. Sci. Technol., vol. 15, no. 2, pp. 373–384, 2018, doi: 10.1007/s13762-017-1371-6.
Z. X. Zhang, H. Y. Zhang, and D. W. Zhou, “Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires,” J. Arid Environ., vol. 74, no. 3, pp. 386–393, 2010, doi: 10.1016/j.jaridenv.2009.09.024.
P. Vranić, S. Glišović, and L. Velimirović, “Decision Support for Integrated Management of Local-Level Adaptation to Climate Changes: The Case of Serbia,” Int. J. Disaster Risk Sci., vol. 12, no. 4, pp. 479–494, 2021, doi: 10.1007/s13753-021-00357-3.
M. F. Goodchild, Spatial Autocorrelation. University of California, 1986. ISBN 0860942236.
P. A. P. Moran, “The Interpretation of Statistical Maps,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 10, no. 2, pp. 243–251, July 1948, doi: https://doi.org/10.1111/j.2517-6161.1948.tb00012.x.
L. Anselin, “Local indicators of spatial association—LISA,” Geographical Analysis, vol. 27, no. 2, pp. 93-115, 1995, doi: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
DOI: https://doi.org/10.22190/FUWLEP240605008V
Refbacks
- There are currently no refbacks.
ISSN 0354-804X (Print)
ISSN 2406-0534 (Online)