DYNAMIC ANALYSIS OF A NANOBEAM UNDER THE INFLUENCE OF AN ELECTROMAGNETIC ACTUATOR AND A MECHANICAL IMPACT

Bogdan Marinca, Nicolae Herisanu, Vasile Marinca

DOI Number
https://doi.org/10.22190/FUWLEP240924039M
First page
409
Last page
416

Abstract


The Optimal Auxiliary Functions Method (OAFM) is applied in the study of nonlinear vibration of a nanobeam, considering the curvature of the beam, the presence of an electromagnetic actuator and a mechanical impact. Our procedure is based on the existence of some auxiliary functions which assure a fast convergence of the approximate solution. The convergence-control parameters present in the auxiliary functions are evaluated by rigorous mathematical procedures.


Keywords

OAFM, electromagnetic actuator, mechanical impact, nonlinear forced vibration

Full Text:

PDF

References


Ghayesh M., Stability and bifurcation of an axially moving beasm with an intermediate spring support, Nonlinear Dynamics, 69, pp.193-200, doi:10.1007/s11071-011-0257-2, https://link.springer.com/ article/10.1007/s11071-011-0257-2

Kazemirad S., Ghayesh M., Amabili M., Thermal effects on nonlinear vibration of an axially moving beam with an intermediate spring-mass support, Shock and Vibration, 20, pp.387-399, doi:10.1155/2013/621295, https://onlinelibrary.wiley.com/doi/10.3233/SAV-120752

Rokni H., Seethaler R.J., Milani A.S., Hashemi S.H., Li X.F., Analytical closed-form solutions for size-dependent pull-in behavior in electrostatic micro-actuators via Fredholm integral equation, Sensors and Actuators A: Physical, 190, pp.32-43, doi:10.1016/j.sna.2012.10.035, https://www.sciencedirect.com /science/article/abs/pii/S0924424712006528?via%3Dihub

Peng J., Yang L., Lin F., Yang J., Dynamic analysis of size-dependent microbeams with nonlinear elasticity under electrical actuation, Applied Mathematical Modeling, 43, pp.441-453, doi: 10.1016/j.apm.2016.11.025, https://www.sciencedirect.com/science/article/pii/S0307904X16306308

Ahn N.D., Hieu D.V., Nonlinear vibration of nonlocal strain gradient nanotubes under longitudinal magnetic field, Vietnam Journal of Mechanics, 43, pp.55-77, doi:10.15625/0866-7136/15467, https://vjs.ac.vn/index.php/vjmech/article/view/15467

Yinusa A.A., Sobamowo M.G., Mechanics of nonlinear internal flow-induced vibration and stability analysis of a pre-tensioned single-walled carbon nanotube using classical differential transformation method with CAT and SAT after-treatment techniques, Forces in Mechanics, 7, 100083 doi:10.1016/j.finmec.2022.100083,https://ww.sciencedirect.com/science/article/pii/S2666359722000130

Marinca V., Herisanu N., Marinca B., Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems, Springer, Cham, 2021

Herisanu N., Marinca V., An efficient analytical approach to investigate the dynamics of a misalignment multirotor system, Mathematics, 8, 1083, doi:10.3390/math8071083, https://www.mdpi.com/2227-7390/8/7/1083

9. Marinca B., Bogdan C., Marinca V., Dynamical SEIR epidemic model by OAFM, Chaos, Solitons,Fractals 14, 2020, 110949, doi:10.1016/j.chaos.2021.11094, https://www.sciencedirect.com/science/article/ pii/S0960077921003039?via%3Dihub

Herisanu N., Marinca V., A solution procedure combining analytical and numerical approach to investigate a two degree of freedom vibroimpact oscillator, Mathematics, 9, 1374, doi:10.3390/math9121374, https://www.mdpi.com/2227-7390/9/12/1374

Herisanu N., Marinca B., Marinca V., Nonlinear vibration of double walled carbon nanotubes subjected to mechanical impact and embedded on Winkler-Pasternak foundation, Materials 15, 8599, 10.3390/ma15238599, https://www.mdpi.com/1996-1944/15/23/8599




DOI: https://doi.org/10.22190/FUWLEP240924039M

Refbacks

  • There are currently no refbacks.


ISSN   0354-804X (Print)

ISSN   2406-0534 (Online)