SHAPING THE DYNAMICS OF AHARONOV-BOHM CAGED LOCALIZED MODES BY NONLINEARITY

Mirjana Stojanović, Ana Mančić, Milutin Stepic, Aleksandra Maluckov

DOI Number
https://doi.org/10.2298/FUPCT2201055S
First page
055
Last page
065

Abstract


Two-dimensional dice lattice can be dressed by artificial flux to host the Aharonov-Bohm (AB) caging effect resulting in the occurrence of a fully flatband spectrum. Here, we focus on the dynamics of flatband compact localized eigenmodes shared by a few unit cells in two snowflake configurations. We numerically show the possibility of dynamically stable propagation of two types of compact localized complexes by tuning the nonlinearity. The AB caging is imprinted in complexes dynamics regardless of the type and strength of nonlinearity. On the other hand, nonlinearity can only affect the appearance of the caged complex. These findings open a new route for the manipulation of structured light in photonic systems.


Keywords

lattice, Aharonov-Bohm caging, flatband spectrum, compacton, nonlinearity

Full Text:

PDF

References


Aharonov Y., Bohm, D., 1959. Phys. Rev., 115(3), 485, doi:10.1103/PhysRev.115.485

Aoki, H., 2020. J. Supercond. Nov. Magn., 33, 1557-1947, doi:10.1007/s10948-019-05366-4

Creffield, C. E., Pieplow, G., Sols, F., Goldman, N., 2016. New J. Phys., 18, 093013, doi:10.1088/1367-2630/18/9/093013

Danieli, C., Andreanov, A., Mithun, T., Flach, S., 2021. Phys. Rev. B, 104(8), 085131, doi:10.1103/PhysRevB.104.085131

Danieli, C., Maluckov, A., Flach, S., 2018. Low Temp. Phys., 44, 678-687, doi:10.1063/1.5041434

Derzhko, O., Richter, J., Maksymenko, M., 2015. Int. J. Mod. Phys. B, 29,

, doi:10.1142/S0217979215300078

Gligorić, G., Beličev, P. P., Leykam, D., Maluckov, A., 2019. Phys. Rev. A, 99, 013826, doi:10.1103/PhysRevA.99.013826

Gligorić, G., Leykam, D., Maluckov, A., 2020. Phys. Rev. A, 101, 023839, doi:10.1103/PhysRevA.101.023839

He, Y., Mao, R., Cai, H., Zhang, J. X., Li, Y., Yuan, L., Zhu, S.J., Wang, D. W., 2021. Phys. Rev. Lett., 126, 103601, doi:10.1103/PhysRevLett.126.103601

Jörg, C., Queraltó, G., Kremer, M., Pelegrí, G., Schulz, J., Szameit, A., Freymann, G., Mompart, J., Ahufinger, V., 2020. Light: Science & Applications, 9, 1-7, doi:10.1038/s41377-020-00385-6

Leykam, D., Andreanov, A., Flach, S., 2018. Adv. Phys. X, 3, 1473052, doi:10.1080/23746149.2018.1473052

Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D., Nori, F., 2017. Phys. Rev. Lett., 118, 040401, doi:10.1103/PhysRevLett.118.040401

Leykam, D., Flach, S., 2018. APL Photonics, 3, 070901, doi:10.1063/1.5034365

Leykam, D., Yuan, L., 2020. Nanophotonics, 9, 4473-4487, doi:10.1515/nanoph-2020-0415

Liang, G. Q., Chong, Y. D., 2013. Phys. Rev. Lett., 110, 203904, doi:10.1103/PhysRevLett.110.203904

Lisi, S., Lu, X., Benschop, T., de Jong, T. A., Stepanov, P., Duran, J. R., Margot, F., Cucchi, I., Cappelli, E., Hunter, A., Tamai, A., Kandyba, V., Giampietri, A., Barinov, A., Jobst, J., Stalman, V., Leeuwenhoek, M., Watanabe, K., Taniguchi, T., 2021. Nat. Phys., 17, 189–193, doi:10.1038/s41567-020-01041-x

Longhi, S., 2014. Opt. Lett., 39, 5892, doi:10.1364/OL.39.005892

Mittal, S., Ganeshan, S., Fan, J., Vaezi, A., Hafezi, M., 2016. Nat. Photonics, 10, 180-183, doi:10.1038/nphoton.2016.10

Morales-Inostroza, L., Vicencio, R. A., 2016. Phys. Rev. A, 94, 043831, doi:10.1103/PhysRevA.94.043831

Mukherjee, S. Di Liberto, M., Öhberg, P., Thomson, R. R., Goldman, N., 2018. Phys. Rev. Lett.,121, 075502, doi: 10.1103/PhysRevLett.121.075502

Mukherjee S., Thomson, R. R., 2017. Opt. Lett., 42, 2243-2246, doi:10.1364/OL.42.002243

Parameswaran, S. A., Roy, R., Sondhi, S. L, 2013. CR Phys., 14, 816-839, doi:10.1016/j.crhy.2013.04.003

Real, B., Cantillano, C., López-González, D., Szameit, A., Aono, M., Naruse, M., Kim, S. J., Wang, K., Vicencio, R. A., 2017. Sci. Rep., 7, 15085, doi:10.1038/s41598-017-15441-2

Stojanović, M. G., Gündoğdu, S., Leykam, D., Angelakis, D. G., Stojanović-Krasić, M., Stepić, M., and Maluckov, A., 2021. arXiv preprint arXiv:2111.13387

Verboven, T., 2016. Master Thesis: Generating Gauge Fields in Optical Kagome and Dice Lattices. Institute for Theoretical Physics, Utrecht; Institute of Photonic Sciences, Barcelona.

Vicencio, R. A., 2021. Adv. Phys. X, 6:1, doi:10.1080/23746149.2021.1878057

Vicencio, R. A., Cantillano, C., Morales-Inostroza, L., Real, B., Mejía-Cortés, C., Weimann, S., Szameit, A., Molina, M. I., 2015. Phys. Rev. Lett., 114, 245503, doi:10.1103/PhysRevLett.114.245503

Vidal, J., Butaud, P., Douçot, B., Mosseri, R., 2001. Phys. Rev. B, 64, 155306, doi:10.1103/PhysRevB.64.155306

Vidal, J., Mosseri, R., Douçot, B., 1998. Phys. Rev. Lett., 81, 5888, doi:10.1103/PhysRevLett.81.5888

Yang, Z. H., Wang, Y. P., Xue, Z. Y., Yang, W. L., Hu, Y., Gao, J. H., Wu, Y., 2016. Phys. Rev. A, 93, 062319, doi:10.1103/PhysRevA.93.062319

Zhang, S. M., Jin, L., 2020. Phys. Rev. B 102, 054301, doi:10.1103/PhysRevB.102.054301


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)